Back close

Planar Resonator based Sensor for Adulteration Detection

Dept/Center/Lab: Amrita Center for Wireless Networks and Applications (AWNA)

Project Incharge:Dr. Aiswarya S.
Planar Resonator based Sensor for Adulteration Detection

The development of microwave sensors for adulteration detection involves a comprehensive literature survey to identify various adulterants present. A microwave resonator is designed using simulation software, leveraging the variation in material properties to detect adulteration. Following design optimization, the sensor is fabricated and experimentally tested to validate simulation results, ensuring accuracy and reliability. Successful prototypes are then refined for productization, aiming to offer a practical solution for real-time adulteration detection in the food industry, ensuring consumer safety and maintaining oil quality standards.

Name of Staff and Students from Amrita : Prof. K A Unnikrishana Menon, Ms Meenu L, Dr Sreedevi K Menon

Publication Details

  1. Aiswarya, S., Sreedevi K. Menon, Massimo Donelli, and L. Meenu. “Development of a Microwave Sensor for Solid and Liquid Substances Based on Closed Loop Resonator.” Sensors 21 (2021): 8506.
  2. Aiswarya, S., L. Meenu, K. A. Menon, Massimo Donelli, and Sreedevi K. Menon. “A Novel Microstrip Sensor Based on Closed Loop Antenna for Adulteration Detection of Liquid Samples.” IEEE Sensors Journal 24, no. 2 (2024): 1405-1414.

Related Projects

Search and Rescue Robot
Search and Rescue Robot
Lightweight, Privacy-Preserving and Usable Security Solutions for Internet of Things
Lightweight, Privacy-Preserving and Usable Security Solutions for Internet of Things
In vitro assay of theranostic agents and their targeted delivery
In vitro assay of theranostic agents and their targeted delivery
Neurophysiological Recording and Modeling Fast-response Timing of Granule and Golgi Cell Responses for Cerebellar Function
Neurophysiological Recording and Modeling Fast-response Timing of Granule and Golgi Cell Responses for Cerebellar Function
Analysis of Seepage Induced Soil Mass Movements and Stabilization using sand Drains
Analysis of Seepage Induced Soil Mass Movements and Stabilization using sand Drains
Admissions Apply Now