Back close

Bio-inspired Processor Design for Cognitive Functions via Detailed Computational Modeling of Cerebellar Granular Layer

Start Date: Friday, Jul 01,2011

Project Incharge:Dr. Shyam Diwakar
Co-Project Incharge:Prof. Bipin Nair
Funded by:Cognitive Science Initiative DST
Bio-inspired Processor Design for Cognitive Functions via Detailed Computational Modeling of Cerebellar Granular Layer

One of our aims is at understanding cognitive functioning of cerebellar circuit function and implement signal processing abilities into neural hardware using cerebellar architecture. The main goals include understanding cerebellum granule neuron’s role in signal propagation and information processing in a central neuronal network. The other major focus will be on the analysis of cerebellar microcircuits for designing electronic neural processors. When signals in the form of spike discharges enter in a neuronal network, they are processed depending on the local organization of neuronal connections and on neuronal and synaptic dynamics. The knowledge extracted through detailed biophysical modeling of cerebellar networks will help to understand cognitive/behavior properties in neuronal ensembles. This information will be then used to develop prototype hardware models in FPGA to understand neuronal processing for robotics and other applications.

Related Projects

Secured Data Acquisition and Transmission System for Data Center (SDATS)
Secured Data Acquisition and Transmission System for Data Center (SDATS)
Alternative Agricultural Techniques for Sustainable Food Supply
Alternative Agricultural Techniques for Sustainable Food Supply
Modulation of MicroRNA and Protein Signatures in Hepatocellular Carcinoma by Chemopreventive Phytochemicals
Modulation of MicroRNA and Protein Signatures in Hepatocellular Carcinoma by Chemopreventive Phytochemicals
Design and Synthesis of Organelle Specific Reactive Fluorescent Probes for Chemoselective Bioimaging
Design and Synthesis of Organelle Specific Reactive Fluorescent Probes for Chemoselective Bioimaging
AIoTm- Secure, Scalable and Interoperable Platform for Internet of Things
AIoTm- Secure, Scalable and Interoperable Platform for Internet of Things
Admissions Apply Now