Back close

Reconstructing Local Field Potential from realistic computational models for spontaneous and evoked stimuli

Reconstructing Local Field Potential from realistic computational models for spontaneous and evoked stimuli

Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. LFPsim was developed to be used on existing cable compartmental neuron and network models. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. Simulations with ataxia model suggest that the dysfunction at a single neuron can lead to population code malformations in circuit computations. Further progress in the computational reconstruction of such disease models will also assist in developing animal models of similar disorders.

References

  • Parasuram H, Nair B, D’Angelo E, Hines M, Naldi G, Diwakar S. Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim. Front Comput Neurosci. 2016 Jun 28;10:65. doi: 10.3389/fncom.2016.00065. PMID: 27445781; PMCID: PMC4923190.

Related Projects

The Discovery of MicroRNAs (miRNAs) that Regulate the Expression of Gelatinase A (Matrix metalloproteinase-2/MMP-2) and B (Matrix metalloproteinase-9/MMP-9) in Colon Cancer Cells
The Discovery of MicroRNAs (miRNAs) that Regulate the Expression of Gelatinase A (Matrix metalloproteinase-2/MMP-2) and B (Matrix metalloproteinase-9/MMP-9) in Colon Cancer Cells
Electrospun TiO2 Nanofibers as a matrix to enhance the drug loading
Electrospun TiO2 Nanofibers as a matrix to enhance the drug loading
Development of Bimodal (MR/Optical) Smart MR Contrast Agent for Diagnosis
Development of Bimodal (MR/Optical) Smart MR Contrast Agent for Diagnosis
Elucidating the Molecular Mechanisms of Anacardic Acid and Biacacetin Mediated Regulation of Matrix Metalloproteinases in Cancer
Elucidating the Molecular Mechanisms of Anacardic Acid and Biacacetin Mediated Regulation of Matrix Metalloproteinases in Cancer
Essential oils and Bacteriophages as Alternate Strategies to Combat Antimicrobial Resistance in ESKAPE Pathogens
Essential oils and Bacteriophages as Alternate Strategies to Combat Antimicrobial Resistance in ESKAPE Pathogens
Admissions Apply Now