Back close

Reconstructing Local Field Potential from realistic computational models for spontaneous and evoked stimuli

Reconstructing Local Field Potential from realistic computational models for spontaneous and evoked stimuli

Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. LFPsim was developed to be used on existing cable compartmental neuron and network models. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. Simulations with ataxia model suggest that the dysfunction at a single neuron can lead to population code malformations in circuit computations. Further progress in the computational reconstruction of such disease models will also assist in developing animal models of similar disorders.

References

  • Parasuram H, Nair B, D’Angelo E, Hines M, Naldi G, Diwakar S. Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim. Front Comput Neurosci. 2016 Jun 28;10:65. doi: 10.3389/fncom.2016.00065. PMID: 27445781; PMCID: PMC4923190.

Related Projects

Identification and Functional Analysis of Probiotic Bacterial Surface Associated Proteins in Preventing Enteropathogenic Infections
Identification and Functional Analysis of Probiotic Bacterial Surface Associated Proteins in Preventing Enteropathogenic Infections
VALUE Virtual Simulation Labs
VALUE Virtual Simulation Labs
Empowering Women & Communities : Sustainable Solutions
Empowering Women & Communities : Sustainable Solutions
Design of a Compact and High Efficient Rectenna for RF Energy Harvesting
Design of a Compact and High Efficient Rectenna for RF Energy Harvesting
AI Co-Design of 5G Base Station Hardware and Software
AI Co-Design of 5G Base Station Hardware and Software
Admissions Apply Now