Publication Type:

Conference Paper

Source:

International Conference on Data Mining and Big Data, Springer, Bali, Indonesia (2016)

URL:

http://link.springer.com/chapter/10.1007%2F978-3-319-40973-3_13

Keywords:

ARCH, ARIMA, ARMA, Big data, Econometrics, financial forecasting, GARCH, NSE, RDD, Scala, Spark, Streaming

Abstract:

Financial forecasting is a widely applied area, making use of statistical prediction using ARMA, ARIMA, ARCH and GARCH models on stock prices. Such data have unpredictable trends and non-stationary property which makes even the best long term predictions grossly inaccurate. The problem is countered by keeping the prediction shorter. These methods are based on time series models like auto regressions and moving averages, which require computationally costly recurring parameter estimations. When the data size becomes considerable, we need Big Data tools and techniques, which do not work well with time series computations. In this paper we discuss such a finance domain problem on the Indian National Stock Exchange (NSE) data for a period of one year. Our main objective is to device a light weight prediction for the bulk of companies with fair accuracy, useful enough for algorithmic trading. We present a minimal discussion on these classical models followed by our Spark RDD based implementation of the proposed fast forecast model and some results we have obtained.

Cite this Research Publication

V. Krishna Menon, Vasireddy, N. Chakravart, Jam, S. Aswin, Pedamallu, V. Teja Navee, Sureshkumar, V., and Soman, K. P., “Bulk Price Forecasting using Spark over NSE Data Set”, in International Conference on Data Mining and Big Data, Bali, Indonesia, 2016.