Basal ganglia and cerebellum have been implicated in critical roles related to control of voluntary motor movements for action selection and cognition. Basal ganglia primarily receive inputs from cortical areas as well as thalamic regions, and their functional architecture is parallel in nature which link several brain regions like cortex and thalamus. Striatum, substantia nigra, pallidum form different neuronal populations in basal ganglia circuit which were functionally distinct supporting sensorimotor, cognitive and emotional-motivational brain functions. In this paper, we have modelled and simulated basal ganglia neurons as well as basal ganglia circuit using integrate and fire neurons. Firing behaviour of subthalamic nucleus and global pallidus externa show how they modulate spike transmission in the circuit and could be used to model circuit dysfunctions in Parkinson's disease.
Chaitanya Medini, Anjitha Thekkekuriyadi, Surya Thayyilekandi, Manjusha Nair, Dr. Bipin G. Nair, and Dr. Shyam Diwakar, “Modeling basal ganglia microcircuits using spiking neurons”, in 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, India, 2016.