Year : 2021
Two-dimensional non-uniform mesh generation for finite element models using MATLAB
Cite this Research Publication : G. Shylaja, Venkatesh, B., Dr. V. Kesavulu Naidu, and Dr. K. Murali, “Two-dimensional non-uniform mesh generation for finite element models using MATLAB”, Materials Today: Proceedings, 2021.
Publisher : Materials Today: Proceedings
Year : 2019
Synthesis, 1D and 2D NMR spectral assignments, and stereochemical studies of some 4,8,9,10-tetraaryl-1,3-diazaadamantan-6-one oximes
Cite this Research Publication : G. Vengatesh and M. Sundaravadivelu, Synthesis, 1D and 2D NMR spectral assignments, and stereochemical studies of some 4,8,9,10-tetraaryl-1,3-diazaadamantan-6-one oximes, Struct. Chem, 2019, 30, 1929
Publisher : Springer
Year : 2019
Darcy–Brinkman–Forchheimer flow over irregular domain using finite elements method
Cite this Research Publication : K. Murali, Dr. V. Kesavulu Naidu, and Dr. B. Venkatesh, “Darcy–Brinkman–Forchheimer flow over irregular domain using finite elements method”, IOP Conference Series: Materials Science and Engineering, vol. 577, p. 012158, 2019.
Publisher : IOP Conference Series: Materials Science and Engineering, IOP Publishing,
Year : 2019
Numerical Integration over arbitrary Tetrahedral Element by transforming into standard 1-Cube
Cite this Research Publication : T. M. Mamatha and Dr. B. Venkatesh, “Numerical Integration over arbitrary Tetrahedral Element by transforming into standard 1-Cube”, IOP Conference Series: Materials Science and Engineering, vol. 577, p. 012172, 2019.
Publisher : IOP Conference Series: Materials Science and Engineering, IOP Publishing,
Year : 2019
Finite Element Method to Solve Poisson’s Equation Using Curved Quadratic Triangular Elements
Cite this Research Publication : G. Shylaja, Dr. B. Venkatesh, and Dr. V. Kesavulu Naidu, “Finite Element Method to Solve Poisson’s Equation Using Curved Quadratic Triangular Elements”, IOP Conference Series: Materials Science and Engineering, vol. 577, p. 012165, 2019.
Publisher : IOP Conference Series: Materials Science and Engineering, IOP Publishing,
Year : 2019
Solution of Darcy-Brinkman Flow over an Irregular Domain by Finite Element Method
Cite this Research Publication : Dr. K. Murali, Dr. V. Kesavulu Naidu, and Dr. B. Venkatesh, “Solution of Darcy-Brinkman Flow Over an Irregular Domain by Finite Element Method”, Journal of Physics: Conference Series, vol. 1172, p. 012091, 2019.
Publisher : Journal of Physics: Conference Series
Year : 2018
Optimal subparametric finite element approach for a Darcy-Brinkman fluid flow problem through a rectangular channel with one curved side
Cite this Research Publication : Dr. K. Murali, V. Naidu, K., and Dr. B. Venkatesh, “Optimal subparametric finite element approach for a Darcy-Brinkman fluid flow problem through a rectangular channel with one curved side”, IOP Conference Series: Materials Science and Engineering, vol. 310, p. 012145, 2018.
Publisher : IOP Conference Series: Materials Science and Engineering,
Year : 2018
Numerical Integration over Ellipsoid by transforming into 10-noded Tetrahedral Elements
Cite this Research Publication : T. M. Mamatha, Dr. B. Venkatesh, and R. Pramod, “Numerical Integration over Ellipsoid by transforming into 10-noded Tetrahedral Elements”, IOP Conference Series: Materials Science and Engineering, vol. 310, p. 012144, 2018.
Publisher : IOP Conference Series: Materials Science and Engineering, IOP Publishing,
Year : 2015
Gauss quadrature rules for numerical integration over a standard tetrahedral element by decomposing into hexahedral elements
Cite this Research Publication : T. M. Mamatha and Dr. B. Venkatesh, “Gauss quadrature rules for numerical integration over a standard tetrahedral element by decomposing into hexahedral elements”, Applied Mathematics and Computation, vol. 271, pp. 1062-1070, 2015.
Publisher : Applied Mathematics and Computation
Year : 2013
Numerical integration over polygonal domains using convex quadrangulation and gauss legendre quadrature rules
Cite this Research Publication : H. T. Rathod, Dr. B. Venkatesh, T, S. K., and M, M. T., “Numerical integration over polygonal domains using convex quadrangulation and gauss legendre quadrature rules”, Inernational journal of engineering and computer science, vol. 2, no. 8, pp. 2576–2610, 2013.
Publisher : Inernational journal of engineering and computer science
Year : 2011
Gauss Legendre – Gauss Jacobi quadrature rules over a Tetrahedral region
Cite this Research Publication : H. Ta Rathod, Dr. B. Venkatesh, and Dr. K.V. Nagaraja, “Gauss Legendre - Gauss Jacobi quadrature rules over a Tetrahedral region”, International Journal of Mathematical Analysis, vol. 5, pp. 189-198, 2011.
Publisher : International Journal of Mathematical Analysis
Year : 2011
On Quartic Splines with Applications to Quadrature over Curved Domains
Cite this Research Publication : Dr. B. Venkatesh, “On Quartic Splines with Applications to Quadrature over Curved Domains”, International e-Journal of Numerical Analysis and Related Topics, vol. 6, pp. 126-146, 2011.
Publisher : International e-Journal of Numerical Analysis and Related Topics,
Year : 2011
On quintic splines with applications to quadrature over curved domains
Cite this Research Publication : H. T. Rathod, Dr. B. Venkatesh, Nagabhushan, C. S., and Hariprasad, A. S., “On quintic splines with applications to quadrature over curved domains”, International electronic engineering mathematical society, vol. 6, pp. 126–146, 2011.
Publisher : IEEMS
Year : 2010
On quartic splines with applications to function and integral function approximations
Cite this Research Publication : Dr. B. Venkatesh, “On quartic splines with applications to function and integral function approximations”, International Electronic Engineering Mathematical Society, vol. 4, pp. 73-103, 2010.
Publisher : International Electronic Engineering Mathematical Society,
Year : 2010
The use of quintic splines for high accuracy function and integral function approximations
Cite this Research Publication : Dr. B. Venkatesh, “The use of quintic splines for high accuracy function and integral function approximations”, International Electronic Engineering Mathematical Society, vol. 4, pp. 104-128, 2010.
Publisher : International Electronic Engineering Mathematical Society,
Year : 2010
The use of quintic splines for high accracy function and integrable function approximations
Cite this Research Publication : H. T. Rathod, Hariprasad, A. S., Dr. B. Venkatesh, and Nagabhushan, C. S., “The use of quintic splines for high accracy function and integrable function approximations”, International electronic engineering mathematical society, vol. 4, pp. 104–128, 2010.
Publisher : International electronic engineering mathematical society
Year : 2010
On quintic splines with applications to function and integrable function approximations
Cite this Research Publication : H. T. Rathod, Nagabhushan, C. S., Dr. B. Venkatesh, and , “On quintic splines with applications to function and integrable function approximations”, International electronic engineering mathematical society, vol. 4, pp. 73–103, 2010.
Publisher : International electronic engineering mathematical society
Year : 2008
The use of parabolic arcs in matching curved boundaries by point transformations for some higher order triangular elements
Cite this Research Publication : H. T. Rathod, Nagaraja, K. V., Dr. V. Kesavulu Naidu, and Dr. B. Venkatesh, “The use of parabolic arcs in matching curved boundaries by point transformations for some higher order triangular elements”, Finite Elements in Analysis and Design, vol. 44, pp. 920-932, 2008.
Publisher : Finite Elements in Analysis and Design
Year : 2007
Symmetric Gauss Legendre quadrature formulas for composite numerical integration over a triangular surface
Cite this Research Publication : H. T. Rathod, Dr. B. Venkatesh, and Nagaraja K V, “Symmetric Gauss Legendre quadrature formulas for composite numerical integration over a triangular surface”, Applied Mathematics and Computation, vol. 188, no. 1, pp. 865–876, 2007.
Publisher : Applied Mathematics and Computation
Year : 2007
Numerical integration of some functions over an arbitrary linear tetrahedra in Euclidean three-dimensional space
Cite this Research Publication : H. T. Rathod, Nagaraja, K. V., and Dr. B. Venkatesh, “Numerical integration of some functions over an arbitrary linear tetrahedra in Euclidean three-dimensional space”, Applied Mathematics and Computation, vol. 191, pp. 397-409, 2007.
Publisher : Applied Mathematics and Computation
Year : 2007
Gauss Legendre–Gauss Jacobi quadrature rules over a tetrahedral region
Cite this Research Publication : H. T. Rathod, Dr. B. Venkatesh, Nagaraja, K. V., and Islam, M. Shafiqul, “Gauss Legendre–Gauss Jacobi quadrature rules over a tetrahedral region”, Applied Mathematics and Computation, vol. 190, pp. 186-194, 2007.
Publisher : Applied mathematics and computation
Year : 2007
On the application of two Gauss–Legendre quadrature rules for composite numerical integration over a tetrahedral region
Cite this Research Publication : H. T. Rathod, Dr. B. Venkatesh, and Nagaraja, K. V., “On the application of two Gauss–Legendre quadrature rules for composite numerical integration over a tetrahedral region”, Applied mathematics and computation, vol. 189, pp. 131–162, 2007.
Publisher : Applied mathematics and computation
Year : 2007
On the application of two symmetric Gauss Legendre quadrature rules for composite numerical integration over a triangular surface
Cite this Research Publication : H. T. Rathod, Nagaraja, K. V., and Dr. B. Venkatesh, “On the application of two symmetric Gauss Legendre quadrature rules for composite numerical integration over a triangular surface”, Applied mathematics and computation, vol. 190, pp. 21–39, 2007.
Publisher : Applied mathematics and computation
Year : 2006
Gauss legendre quadrature formulas over a tetrahedron
Cite this Research Publication : H. T. Rathod, Dr. B. Venkatesh, and Dr. K.V. Nagaraja, “Gauss legendre quadrature formulas over a tetrahedron”, Numerical Methods for Partial Differential Equations, vol. 22, pp. 197–219, 2006.
Publisher : Numerical Methods for Partial Differential Equations, Wiley Online Library,
Year : 2006
On the application of two symmetric Gauss Legendre quadrature rules for composite numerical integration over a tetrahedral region 2006
Cite this Research Publication : H. T. Rathod, Dr. B. Venkatesh, and Nagaraja, K. V., “On the application of two symmetric Gauss Legendre quadrature rules for composite numerical integration over a tetrahedral region”, International Journal for Computational Methods in Engineering Science and Mechanics, vol. 7, no. 6, pp. 445–459, 2006.
Publisher : International Journal for Computational Methods in Engineering Science and Mechanics, Taylor & Francis Group,
Year : 2006
On the application of two symmetric Gauss Legendre quadrature rules for composite numerical integration over a tetrahedral region
Cite this Research Publication : H. T. Rathod, Dr. B. Venkatesh, and Nagaraja, K. V., “On the application of two symmetric Gauss Legendre quadrature rules for composite numerical integration over a tetrahedral region”, International Journal for Computational Methods in Engineering Science and Mechanics, vol. 7, no. 6, pp. 445–459, 2006.
Publisher : Taylor & Francis Group
Year : 2005
Symmetric Gauss Legendre quadrature rules for composite numerical integration over a tetrahedral region
Cite this Research Publication : H. T. Rathod, Dr. B. Venkatesh, and Dr. K.V. Nagaraja, “Symmetric Gauss Legendre quadrature rules for composite numerical integration over a tetrahedral region”, Journal of Bulletin of Mathematics, vol. 24, pp. 51–79, 2005.
Publisher : Journal of Bulletin of Mathematics
Year : 2005
Gauss Legendre Quadrature Formulae for Tetrahedra
Cite this Research Publication : H. T. Rathod, Dr. B. Venkatesh, and Dr. K.V. Nagaraja, “Gauss Legendre Quadrature Formulae for Tetrahedra”, International Journal for Computational Methods in Engineering Science and Mechanics, vol. 6, no. 3, pp. 179–186, 2005.
Publisher : International Journal for Computational Methods in Engineering Science and Mechanics, Taylor & Francis
Year : 2004
Gauss Legendre quadrature over a triangle Journal of Mathematics & Information Technology
Cite this Research Publication : Dr. B. Venkatesh, “Gauss Legendre quadrature over a triangle Journal of Mathematics & Information Technology”, Acharya Nagarjuna International Journal of Mathematics & Information Technology, vol. 1, no. 1, pp. 33-52, 2004.
Publisher : Acharya Nagarjuna International Journal of Mathematics & Information Technology,
Year : 2004
Gauss Legendre quadrature over a triangle Journal of Mathematics & Information Technology
Cite this Research Publication : Dr. B. Venkatesh, “Gauss Legendre quadrature over a triangle Journal of Mathematics & Information Technology”, Acharya Nagarjuna International Journal of Mathematics & Information Technology, vol. 1, no. 1, pp. 33-52, 2004.
Publisher : Acharya Nagarjuna International Journal of Mathematics & Information Technology
Year : 2004
Gauss Legendre quadrature over a triangle
Cite this Research Publication : H. Ta Rathod, Dr. K.V. Nagaraja, Venkatesudu, Bc, and Ramesh, N. Ld, “Gauss Legendre quadrature over a triangle”, Journal of the Indian Institute of Science, vol. 84, pp. 183-188, 2004.
Publisher : Journal of the Indian Institute of Science