Back close

Neuroscience and Robotics

Neuroscience and Robotics

Our projects propose to develop a brain-inspired pattern recognition algorithm for multiple tasks including robotic trajectory tracking and data classification. At the current phase, the project aims to investigate the temporal and spatial dynamics in the cerebellar network models capable of predicting cerebellar input-output transformations by analyzing the mathematical and computational properties of the neural circuits.

The proposal is to exploit biophysical neural network models to the problem of pattern recognition and navigation in mobile robots to achieve practical algorithms for specific applications like surgery or disaster mitigation. Unlike many projects, this project will rely on biological basis for design and function of a pattern classifier that can be used in motor articulation.

References

  • Asha Vijayan, Chaitanya Nutakki, Dhanush Kumar, Dr. Krishnashree Achuthan, Dr. Bipin G. Nair, and Dr. Shyam Diwakar, “Enabling a freely accessible open source remotely controlled robotic articulator with a neuro-inspired control algorithm”, International Journal of Interactive Mobile Technologies, vol. 13, no. 1, pp. 61-75, 2017. 

Related Projects

Pedagogy
Pedagogy
Translational signal analysis evaluating brain-heart connection using complexity methods
Translational signal analysis evaluating brain-heart connection using complexity methods
Synergistic Effects of Plants and Bacteriophages in Wastewater treatment
Synergistic Effects of Plants and Bacteriophages in Wastewater treatment
Studies on Cathode materials for all solid state ion batteries
Studies on Cathode materials for all solid state ion batteries
Synthesis of Nanostructured Transition Metal Oxide Thin Film Coatings on Steel Substrates by Dip Coating for Corrosion and Wear Resistance Applications
Synthesis of Nanostructured Transition Metal Oxide Thin Film Coatings on Steel Substrates by Dip Coating for Corrosion and Wear Resistance Applications
Admissions Apply Now