Back close

Course Detail

Course Name Linear Algebra And Its Applications
Course Code 25MA732
Program M.Tech. Wireless Networks & Applications (Specialising in IoT, AI, 5G, Blockchain) (For Working Professionals & Regular Students)
Credits 3
Campus Amritapuri

Syllabus

Syllabus

Module 1: Vectors, Matrices, and Wireless Data Modeling Vectors, linear combinations, dot products, norms,Matrix operations, vector spaces, subspaces, linear independence, Rank, null space, column space

Module 2: Linear Systems and Matrix Factorizations 

Solving systems: Gaussian elimination, LU decomposition, Matrix inversion and conditioning, Introduction to overfitting and ill-posed systems in ML 

Module 3: Orthogonality and Dimensionality Reduction, Inner products, orthogonal projections, Gram-Schmidt orthogonalization, SVD and PCA, Covariance matrices and eigen decomposition 

Practical Tasks: Perform PCA on wireless sensor data to reduce feature space, Visualize and compress signal/image data using SVD 

Module 4: Linear Transformations and Learning Representations 

Kernel and image of linear transformations, Change of basis, similarity, diagonalization, Introduction to kernels in ML (basis transformation idea) 

Module 5: Least Squares, Eigenvalues, and Iterative Solutions 

Least squares approximation, Eigenvalues/eigenvectors in system analysis, Iterative methods (Jacobi, Gauss-Seidel, gradient descent preview) 

Practical Tasks: 

  • Implement least squares regression and compare with gradient descent
  • Use eigenvalues to perform spectral clustering on simulated network traffic

Objectives and Outcomes

Course Outcome Statement (CO) 

CO1 

Ability to apply vector and matrix concepts to wireless signal modeling. 

CO2 

Skill to use linear algebra for solving wireless network optimization problems 

CO3 

Capability to perform dimensionality reduction on wireless data using PCA 

CO4 

Ability to implement linear regression for predictive modeling in wireless systems  

CO5 

Competence in applying eigenvalue methods to analyze wireless network stability 

 

CO – PO Affinity Map 

PO 

PO1 

PO2 

PO3 

PO4 

PO5 

PO6 

PO7 

PO8 

PO9 

PO10 

PO11 

PO12 

PS01 

PSO2 

PSO3 

CO 

CO1 

– 

– 

– 

– 

– 

– 

– 

– 

– 

CO2 

– 

– 

– 

– 

– 

– 

– 

– 

– 

CO3 

– 

– 

– 

– 

– 

– 

– 

– 

– 

CO4 

– 

– 

– 

– 

– 

– 

– 

– 

– 

CO5 

– 

– 

– 

– 

– 

– 

– 

– 

– 

3-strong, 2-moderate, 1-weak 

Text Books / References

  1. Golub and Loan, “Matrix Computations”, Third Edition, John Hopkins University Press, 1996.  
  2. Carl. D. Meyer, “Matrix Analysis and Applied Liner Algebra”, SIAM, 2001.  
  3. Gilbert Strang, “Introduction to Linear Algebra”, Fourth Edition, Wellesley Cambridge Press, 2009.  

DISCLAIMER: The appearance of external links on this web site does not constitute endorsement by the School of Biotechnology/Amrita Vishwa Vidyapeetham or the information, products or services contained therein. For other than authorized activities, the Amrita Vishwa Vidyapeetham does not exercise any editorial control over the information you may find at these locations. These links are provided consistent with the stated purpose of this web site.

Admissions Apply Now