Back close

An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

Project Incharge:Dr. Remya S.
An Adaptive Neuro-fuzzy Inference System to Monitor and Manage the Soil Quality to Improve Sustainable Farming in Agriculture

The hybrid neuro model is equipped with the high learning capabilities of a neural network and the reasoning ability of fuzzy logic and comes up with a model for effectively correlating the values with the target. This predictive modeling benefits a variety of stakeholders. Accurate projections can assist governments to govern themselves more efficiently.Farmer can come up with their own ideas to increase their production rate in a professional and timely manner. As a result, investors can devise more profitable and effective investment plans. This study and analysis of predictive modeling aim to anticipate the quality of agricultural data by developing a hybrid predictive technique that combines artificial neural network and optimization techniques. 

Related Projects

Photophysical and Co-ordination Properties of Cyclam Core Dendrimers
Photophysical and Co-ordination Properties of Cyclam Core Dendrimers
Super resolution of Images for Breast Cancer from Mammography Images
Super resolution of Images for Breast Cancer from Mammography Images
Cloud based Adaptive eLearning Network
Cloud based Adaptive eLearning Network
Kernel Based Approaches for Context Based Image Annotation
Kernel Based Approaches for Context Based Image Annotation
Development of a Model for Evaluation and Assessment of Meanness of SMEs and Effective Large-scale Implementation of Lean Strategies.
Development of a Model for Evaluation and Assessment of Meanness of SMEs and Effective Large-scale Implementation of Lean Strategies.
Admissions Apply Now