Back close

Bhuja: A 6-DOF Robotic Arm

Dept/Center/Lab: Humanitarian Technology (HUT) Labs

Bhuja: A 6-DOF Robotic Arm

Bhuja is a six-degree-of-freedom (6-DOF) robotic arm designed for precision robotic applications. It features three control modes: operation via the Teach Pendant, control through the AMC (Arm Master Controller), and command-based execution using the SMC (System Master Controller) through ZMQ protocol.

Each of its six joints is powered by an individual actuator motor, ensuring smooth and accurate movement. Bhuja supports three operational modes: Base Mode, Tool Mode, and Joint Mode, allowing for versatile motion control depending on the application requirements. Additionally, it can be controlled in two primary ways: Teach Mode, where users manually guide the arm to record motion sequences, and Repeat Mode, where the system executes pre-programmed tasks autonomously.

Bhuja also provides flexibility with its end effector, as any type of end effector can be attached to the last joint to perform a variety of tasks, such as picking, welding, or precision assembly. This adaptability makes the robotic arm suitable for a wide range of operations.

With its high precision, versatility, and ability to integrate different end effectors, Bhuja is ideal for applications in industrial automation, research, and more. Its integration with ZMQ-based commands enhances its flexibility, enabling seamless coordination with other robotic systems. The combination of multiple control options and robust actuation makes Bhuja a powerful tool for advanced robotic automation.

Related Projects

Inventory of Vegetation with special reference to Medicinal and Aromatic Plants and Documentation of Traditional Knowledge – in the Walayar Valley, Western Ghats
Inventory of Vegetation with special reference to Medicinal and Aromatic Plants and Documentation of Traditional Knowledge – in the Walayar Valley, Western Ghats
Enhancing the Quantification of Wetland Methane Emissions by Data Assimilation and Remote Sensing Techniques to Improve Understanding of the Terrestrial Carbon Cycle
Enhancing the Quantification of Wetland Methane Emissions by Data Assimilation and Remote Sensing Techniques to Improve Understanding of the Terrestrial Carbon Cycle
Joint Utilization of Advance Facility (JUAF) Program ISJRP – Indo-Swiss
Joint Utilization of Advance Facility (JUAF) Program ISJRP – Indo-Swiss
Studies on the Effect of Fungal Enzymes on Bacterial Biofilm Inhibition
Studies on the Effect of Fungal Enzymes on Bacterial Biofilm Inhibition
MedSIM 1.0 Computer based Medical Simulation 
MedSIM 1.0 Computer based Medical Simulation 
Admissions Apply Now