Back close

Computational Modelling of Neurotransmitter Mediated Motor Learning in Basal Ganglia

Project Incharge:Dr. Manjusha Nair M.
Co-Project Incharge:Dr. Shyam Diwakar
Computational Modelling of Neurotransmitter Mediated Motor Learning in Basal Ganglia

Neurotransmitters are chemical messengers that carry signals from one neuron to the next and even to muscles or glands. In recent years several computational and mathematical analysis of the model has been widely used to study the dysfunction of Basal Ganglia (BG). The proposed study focuses on the neural dynamics of Neurotransmitters associated with motor learning in Basal Ganglia. This study will implement an artificial Reinforcement learning model which explains the dynamic behavior of Parkinson’s Disease, a neurological condition associated with the lesion of the Basal Ganglia and thereby bridging the gap between Artificial Intelligence (AI) and Neuroscience. The demonstration of the condition of Parkinson’s Disease under the context of reinforcement learning is planned with the help of a robotic arm or a virtual robot. The Reinforcement Learning model should automatically select an indirect pathway by learning the factors causing the depletion of neurons and thus inhibiting the movements or generating motor symptoms like tremor. In addition to this, a 3-Dimensional demonstration of the excitation and inhibition of the neurons in the PD condition will be done with the help of Unity Real-time Development Platform, for better understanding.

Related Projects

Design and Development of an IoT Based Smart Irrigation and Fertilization System for Chilli Farming
Design and Development of an IoT Based Smart Irrigation and Fertilization System for Chilli Farming
AI-Enabled Distribution Grid Asset Monitoring for Improve Protection and Sustainability
AI-Enabled Distribution Grid Asset Monitoring for Improve Protection and Sustainability
Impacts of recent El-Nino Southern Oscillation (ENSO) on the Water-Food-Energy Nexus in South Asia (Indian PI)
Impacts of recent El-Nino Southern Oscillation (ENSO) on the Water-Food-Energy Nexus in South Asia (Indian PI)
Wireless remote Sensing, Experimentation, Monitoring and Administration Laboratory
Wireless remote Sensing, Experimentation, Monitoring and Administration Laboratory
Non-Invasive Real-Time Monitoring of Blood Pressure and Blood Glucose through Photoplethysmography leveraging IoMT and AI 
Non-Invasive Real-Time Monitoring of Blood Pressure and Blood Glucose through Photoplethysmography leveraging IoMT and AI 
Admissions Apply Now