Back close

Identification of Genomic Rearrangements across Organisms Leading to Evolutionary Insights

Project Incharge:Dr. Indulekha T. S.
Identification of Genomic Rearrangements across Organisms Leading to Evolutionary Insights

Genomes of organisms undergo rearrangements and mutations over time, and genome evolutions are studied well by understanding this dynamism. Recombination, transposition and mutation are the three important processes that lead to these genomic changes. Genome rearrangements describe changes in the genetic linkage relationship of large chromosomal regions, involving reversals, transpositions, block interchanges, deletions, insertions, fissions, fusions and translocations etc. Many algorithms for calculating rearrangement scenarios between two genomes have been proposed. The calculated rearrangement scenario is often common for the same pair of permutations. Hence, deciding which calculated rearrangement scenario is more biologically meaningful is significant. Rearrangements have been shown to be responsible for numerous heritable diseases, evolution and specialization. The chromosomal regions affected by these rearrangements are called breakpoints, while those which have not been rearranged are called synteny blocks. To gain a better understanding of the evolutionary forces that affect genome architecture, Homologous synteny blocks (HSBs) and chromosome evolutionary breakpoint regions (EBRs) can be identified.

Related Projects

Nano-Fibre Scaffold Electrodes based on Mn02 and Polymer/Carbon Composites for High Performance Storage Device
Nano-Fibre Scaffold Electrodes based on Mn02 and Polymer/Carbon Composites for High Performance Storage Device
Electrodeposition of Lead-Free Solder Materials for Microelectronic Packaging
Electrodeposition of Lead-Free Solder Materials for Microelectronic Packaging
Predictive Modeling of Complex IT systems
Predictive Modeling of Complex IT systems
Further Development of a Software Library to Convert Orthographic Views to a 3D Model for AutoPilot3D
Further Development of a Software Library to Convert Orthographic Views to a 3D Model for AutoPilot3D
Reliability based soft decision decoding of Turbo codes for satellite communication
Reliability based soft decision decoding of Turbo codes for satellite communication
Admissions Apply Now