Back close

Identification of Genomic Rearrangements across Organisms Leading to Evolutionary Insights

Project Incharge:Dr. Indulekha T. S.
Identification of Genomic Rearrangements across Organisms Leading to Evolutionary Insights

Genomes of organisms undergo rearrangements and mutations over time, and genome evolutions are studied well by understanding this dynamism. Recombination, transposition and mutation are the three important processes that lead to these genomic changes. Genome rearrangements describe changes in the genetic linkage relationship of large chromosomal regions, involving reversals, transpositions, block interchanges, deletions, insertions, fissions, fusions and translocations etc. Many algorithms for calculating rearrangement scenarios between two genomes have been proposed. The calculated rearrangement scenario is often common for the same pair of permutations. Hence, deciding which calculated rearrangement scenario is more biologically meaningful is significant. Rearrangements have been shown to be responsible for numerous heritable diseases, evolution and specialization. The chromosomal regions affected by these rearrangements are called breakpoints, while those which have not been rearranged are called synteny blocks. To gain a better understanding of the evolutionary forces that affect genome architecture, Homologous synteny blocks (HSBs) and chromosome evolutionary breakpoint regions (EBRs) can be identified.

Related Projects

Development of an On-board Integrated Switched Reluctance Motor (SRM) traction drive for Electric Vehicles (EVs)
Development of an On-board Integrated Switched Reluctance Motor (SRM) traction drive for Electric Vehicles (EVs)
Alternative Agricultural Techniques for Sustainable Food Supply
Alternative Agricultural Techniques for Sustainable Food Supply
An exploratory clinical study to determine the utility of heart rate variability analysis in the assessment of doṣa imbalance
An exploratory clinical study to determine the utility of heart rate variability analysis in the assessment of doṣa imbalance
Development of High Volume Flyash Foam Concrete Wall Panel Using Rice Straw as Thermal Insulation Material
Development of High Volume Flyash Foam Concrete Wall Panel Using Rice Straw as Thermal Insulation Material
Non-Invasive Real-Time Monitoring of Blood Pressure and Blood Glucose through Photoplethysmography leveraging IoMT and AI 
Non-Invasive Real-Time Monitoring of Blood Pressure and Blood Glucose through Photoplethysmography leveraging IoMT and AI 
Admissions Apply Now