Back close

Ontology Driven Knowledge-based Systems for Disease and Treatment Prediction  

Project Incharge:Dr. S. Subbulakshmi
Ontology Driven Knowledge-based Systems for Disease and Treatment Prediction  

With the explosion of healthcare information, there has been a tremendous amount of heterogeneous Textual Medical Knowledge (TMK), which plays an essential role in healthcare information systems. Knowledge graphs (KGs) enable better data representation and knowledge inference by arranging and incorporating the TMK into graphs. It automatically obtains knowledge from knowledge graphs with high precision, by focusing on taxonomy with individual health, their medications, brands, pricing, etc. To build a high quality and thorough clinical Knowledge Graph (KG), Spark NLP Relation Extraction (RE) Models and Neo4j Graph DB are used. Main aim is to provide a thorough taxonomy and a general view of healthcare KG construction It could provide insights into the patient’s history of medication, the results of various clinical tests, the efficacy of the treatment, and details about the drugs.

Related Projects

Online Monitoring for Geological CO2 Storage and Leakage Based on Wireless Sensor Networks
Online Monitoring for Geological CO2 Storage and Leakage Based on Wireless Sensor Networks
Neural Network Modeling for Condition Monitoring of I. C. Engine using different composite flywheels
Neural Network Modeling for Condition Monitoring of I. C. Engine using different composite flywheels
Non-invasive Detection of Glucose using Planar RF Sensors
Non-invasive Detection of Glucose using Planar RF Sensors
Green Synthesis of Metal Nanoparticles & its Applications
Green Synthesis of Metal Nanoparticles & its Applications
Ayurveda Clinical e-learning Web Platform (AyurCeL)
Ayurveda Clinical e-learning Web Platform (AyurCeL)
Admissions Apply Now