Back close

Ontology Driven Knowledge-based Systems for Disease and Treatment Prediction  

Project Incharge:Dr. S. Subbulakshmi
Ontology Driven Knowledge-based Systems for Disease and Treatment Prediction  

With the explosion of healthcare information, there has been a tremendous amount of heterogeneous Textual Medical Knowledge (TMK), which plays an essential role in healthcare information systems. Knowledge graphs (KGs) enable better data representation and knowledge inference by arranging and incorporating the TMK into graphs. It automatically obtains knowledge from knowledge graphs with high precision, by focusing on taxonomy with individual health, their medications, brands, pricing, etc. To build a high quality and thorough clinical Knowledge Graph (KG), Spark NLP Relation Extraction (RE) Models and Neo4j Graph DB are used. Main aim is to provide a thorough taxonomy and a general view of healthcare KG construction It could provide insights into the patient’s history of medication, the results of various clinical tests, the efficacy of the treatment, and details about the drugs.

Related Projects

Amrita IKS Centre for Ayurveda, Vyakarana, and Darśana
Amrita IKS Centre for Ayurveda, Vyakarana, and Darśana
Landslide Early Warning System
Landslide Early Warning System
A study of Biological Activity of Extracted Microbial Biosurfactant
A study of Biological Activity of Extracted Microbial Biosurfactant
Novel Microchannel Reactors for the Conversion of SynGas to Liquid Fuels
Novel Microchannel Reactors for the Conversion of SynGas to Liquid Fuels
Elucidating the Molecular Mechanisms of Anacardic Acid and Biacacetin Mediated Regulation of Matrix Metalloproteinases in Cancer
Elucidating the Molecular Mechanisms of Anacardic Acid and Biacacetin Mediated Regulation of Matrix Metalloproteinases in Cancer
Admissions Apply Now