Back close

Water Demand Prediction Model for Urban Cities

Dept/Center/Lab: Amrita Center for Wireless Networks and Applications (AWNA)

Project Incharge:Dr. Aryadevi R. D.
Water Demand Prediction Model for Urban Cities

Water is an essential and crucial element of each of the living beings. The urban water systems cater to the water necessities of the communities. Hence urban water management is a very critical task. Water demand modeling and prediction is one of the techniques that elevates resource allocation, supply cost reduction, fatalities supply network reduction, and so on. We are proposing a water demand prediction platform with the existing dependent features and a deep neural network model to incorporate the time series, weather, and demand to predict the short-term water demand effectively. Since the IoT sensors are the major data sources for this prediction model we are proposing a multivariate data imputation model, multi-variate Gaussian- based GAIN (Generative adversarial imputation Net).

Name of students and staff from Amrita : Nibi K V, Research Associate Amrita Center for Wireless Network & Application

International Collaborators : Dragan Savic FREng, Professor University of Exeter & Univ. of Belgrade; KWR Water Research

Related Projects

Investigation on Carbon Nano Fiber Reinforced Polyether Ether Ketone/Polyether Imides as Polymer Composite Container for Long Time Nuclear Waste Disposal
Investigation on Carbon Nano Fiber Reinforced Polyether Ether Ketone/Polyether Imides as Polymer Composite Container for Long Time Nuclear Waste Disposal
Behzad-Vizing Conjecture on Graph Coloring for Product Graphs
Behzad-Vizing Conjecture on Graph Coloring for Product Graphs
Preparation of Carboxymethyl Chitin and Chitosan Derivatives
Preparation of Carboxymethyl Chitin and Chitosan Derivatives
Ayurveda Clinical e-Learning (AyurCeL) Portal – Clinical Case Repository of Ayurveda Physicians
Ayurveda Clinical e-Learning (AyurCeL) Portal – Clinical Case Repository of Ayurveda Physicians
Behavioural Abnormality Detection for population with Mild cognitive impairment in a multi-occupant Ambient Assisted Living
Behavioural Abnormality Detection for population with Mild cognitive impairment in a multi-occupant Ambient Assisted Living
Admissions Apply Now