Programs
- M. Tech. in Automotive Engineering -Postgraduate
- Fellowship in Uro Oncology & Robotic Urology 1 Year -Fellowship
Publication Type : Journal Article
Publisher : Tsinghua University Press
Source : Big Data Mining and Analytics
Url : https://doi.org/10.26599/bdma.2021.9020017
Campus : Faridabad
School : School of Artificial Intelligence
Year : 2023
Abstract : As a huge number of satellites revolve around the earth, a great probability exists to observe and determine the change phenomena on the earth through the analysis of satellite images on a real-time basis. Therefore, classifying satellite images plays strong assistance in remote sensing communities for predicting tropical cyclones. In this article, a classification approach is proposed using Deep Convolutional Neural Network DCNN, comprising numerous layers, which extract the features through a downsampling process for classifying satellite cloud images. DCNN is trained marvelously on cloud images with an impressive amount of prediction accuracy. Delivery time decreases for testing images, whereas prediction accuracy increases using an appropriate deep convolutional network with a huge number of training dataset instances. The satellite images are taken from the Meteorological & Oceanographic Satellite Data Archival Centre, the organization is responsible for availing satellite cloud images of India and its subcontinent. The proposed cloud image classification shows 94% prediction accuracy with the DCNN framework.
Cite this Research Publication : Kalyan Kumar Jena, Sourav Kumar Bhoi, Soumya Ranjan Nayak, Ranjit Panigrahi, Akash Kumar Bhoi, Deep Convolutional Network Based Machine Intelligence Model for Satellite Cloud Image Classification, Big Data Mining and Analytics, Tsinghua University Press, 2023, https://doi.org/10.26599/bdma.2021.9020017