Back close

Study and Simulation of Landing Dynamics of a Lunar Soft Lander

Project Incharge:Dr. Ganesha Udupa
Co-Project Incharge:Dr. Ganesh Sundaram
Co-Project Incharge:Dhananjay Raghavan Pramod S
Funded by:ISRO, Trivandrum
Study and Simulation of Landing Dynamics of a Lunar Soft Lander

The rough terrain of the moon surfaces are well known to present daunting challenges for any space module to land safely with stability. The project aims to address some part of this issue through study and simulation of the landing dynamics of a lunar soft landing gear module. The project proposes to simulate various landing conditions of lunar module and use the results to study the stability of the design. With these results, the proposal is to develop a soft landing module that will meet the stability criteria.

The first few seconds before and after touchdown are critical. In this phase the landing gear system should aid to decrease the magnitude of deceleration (shock) of landing and damping mechanism to reduce transmission of shock vibration.

The project proposes to select an optimum honeycomb shock absorber and a suitable configuration for the Lander. These results will be helpful in the development of a soft landing gear module for future moon exploration missions of ISRO.

Stability Test

The maximum slope of the surface on which the lander can land safely is found out to be 210. The maximum slope of the landing is given as <180. Adams simulation also proves the stable angle is upto 210.

Adams Simulation

Related Projects

Mobile Ocean Sense: Utilizing Fishing Vessels for Ocean Data Collection
Mobile Ocean Sense: Utilizing Fishing Vessels for Ocean Data Collection
Reconstructing the events led to the 2023 South Lhonak Glacial Lake Outburst Flood (GLOF) in Sikkim, India
Reconstructing the events led to the 2023 South Lhonak Glacial Lake Outburst Flood (GLOF) in Sikkim, India
Rural Healthcare for Diabetes and Tuberculosis
Rural Healthcare for Diabetes and Tuberculosis
Identification of Natural Product Lead molecules as Potential Modulators of Wound Healing and Elucidation of the underlying Molecular Mechanisms
Identification of Natural Product Lead molecules as Potential Modulators of Wound Healing and Elucidation of the underlying Molecular Mechanisms
Architectures, Algorithms, and Models for Developing Remote Cardiac Rehabilitation
Architectures, Algorithms, and Models for Developing Remote Cardiac Rehabilitation
Admissions Apply Now