Back close

Design and development of a negative stiffness mechanism based low-frequency passive vibration isolation platform

Project Incharge: Dr. B. Santhosh

Co-Project Incharge: Dr. K. I. Ramachandran

School: School of Engineering, Coimbatore

Agency & Scheme: ISRO/ RESPOND

Duration: 24 Months

Total Cost: Rs. 18,27,920/-

Design and development of a negative stiffness mechanism based low-frequency passive vibration isolation platform

Indian Space Research Organization (ISTO) awarded a research project titled “Design and development of a negative stiffness mechanism based low-frequency passive vibration isolation platform” under SERB SURE scheme. The Principal Investigator (PI) for the project is Dr. B. Santhosh, Associate Professor , Department of Mechanical Engineering, Amrita School Engineering, Coimbatore and Co-Investigator for the Project is Dr. K. I. Ramachandran, Professor, Department of Mechanical Engineering, Amrita School Engineering, Coimbatore.

Project Summary

This project involves the development of a mathematical model for the six degrees of freedom vibration isolator based on QZS mechanism.  A computational framework based on harmonic balance method (HBM) will be developed to obtain the transmissibility of the isolator.  A prototype of the six degrees of freedom isolator based on negative stiffness will be developed and tested for low frequency isolation capability.

Related Projects

Development of Particle Reinforced Aluminium Metal Matrix Composites for Slurry Erosive Wear Resistance- Naval Applications
Development of Particle Reinforced Aluminium Metal Matrix Composites for Slurry Erosive Wear Resistance- Naval Applications
Architectures, Algorithms, and Models for Developing Remote Cardiac Rehabilitation
Architectures, Algorithms, and Models for Developing Remote Cardiac Rehabilitation
Development of Energy Saver for Induction Motors
Development of Energy Saver for Induction Motors
Thermal Hydraulics of Fast Breeder Reactor
Thermal Hydraulics of Fast Breeder Reactor
Blockchain-based Peer to Peer Energy Trading
Blockchain-based Peer to Peer Energy Trading
Admissions Apply Now