Back close

Diversity Oriented Synthesis Applications to Flavonols, Flavones, Isoflavones and Biflavones

Start Date: Sunday, Mar 01,2009

School: School of Biotechnology

Funded by:Amrita Vishwa Vidyapeetham
Diversity Oriented Synthesis Applications to Flavonols, Flavones, Isoflavones and Biflavones

Divergent oriented synthesis is a strategy which aims to the synthesis of compounds with diverse chemical structures. It is often an alternative to convergent synthesis or linear synthesis. With this intention, the diversity oriented synthesis was developed. In Phytochemistry laboratory our aims is to generate a library of bioactive oxygen heterocyclic compounds by first reacting with a easily available starting material to form set of intermediates, e.g. chalcones, 1,3-diketones.  The next target compounds are generated by suitable transformations of  intermediates, e.g. flavones, flavonols, flavanones, isoflavones and biflavones. This methodology quickly diverges to large numbers of different classes of compounds from simple starting materials. It is also efficient synthesis. The scheme methodology is given below.

diversity-bio-project

Some examples of  compounds synthesised are given below:

  1. chalcones
  2. dihydroflavonols
  3. flavones
  4. flavonol 
  5. isoflavones

Related Projects

Computational Chemistry & Molecular Docking Studies
Computational Chemistry & Molecular Docking Studies
Screening, Identification and Characterisation of Bacteriocins Isolated from Wine Microflora
Screening, Identification and Characterisation of Bacteriocins Isolated from Wine Microflora
Combating Candida Albicans by Targeting the Virulence Factors
Combating Candida Albicans by Targeting the Virulence Factors
Cost Effective Device and Cloud Enabled Smart Solution for Diabetes Care
Cost Effective Device and Cloud Enabled Smart Solution for Diabetes Care
Novel Anti-MRSA Compounds from Padina tetrastromatica: Identification, Isolation and Mass Spectrometric characterization
Novel Anti-MRSA Compounds from Padina tetrastromatica: Identification, Isolation and Mass Spectrometric characterization
Admissions Apply Now