Back close

Molecular Mechanisms in Impaired Wound-Healing

Start Date: Friday, Aug 01,2008

School: School of Biotechnology

Project Incharge:Dr. Bipin Kumar G. Nair
Funded by:Bristol Myers Squibb (BMS) Amrita Vishwa Vidyapeetham
Molecular Mechanisms in Impaired Wound-Healing

Diabetic wound healing is a challenging problem to solve as it requires the integration of interdependent processes that involve signal transduction input from inflammation, cell migration, cell proliferation, cell differentiation and production of extracellular protein components. A number of factors including Epidermal Growth Factor (EGF), Matrix Metalloproteinases, as well as Nitric Oxide (NO) play unique roles independently, or through cross talk between these factors and thereby have a profound impact on the wound healing process.

The potential for utilizing natural products (e.g. Anacardic Acid from Cashew nut Shell Liquid) as an invaluable repository for the discovery of novel drug candidates and developing these leads as ideal templates to design effective drugs are important milestones being pursued by the laboratory.

Another approach also involves study of in-silico methods of pathway modeling to understand mechanisms involved in Wound Healing. This approach will help in unraveling the molecular effects resulting from the concerted actions of many modulators by taking into account a detailed dynamic representation of the same.

Publications

Athira Omanakuttan, Jyotsna Nambiar, Rodney M. Harris, Chinchu Bose, Nanjan Pandurangan, Rebu K. Varghese, Geetha B. Kumar, John A. Tainer, Asoke Banerji, J. Jefferson P. Perry and Bipin G. Nair. “Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9.” Mol Pharmacol 82:614–622, 2012.

Related Projects

Bio Enhancing Property of Cow’s Urine In Combination with Antibiotics and Natural Plant Extracts
Bio Enhancing Property of Cow’s Urine In Combination with Antibiotics and Natural Plant Extracts
Transformation, Expression and Activity Analysis of Recombinant Staphylococcus Autolysin in Bacillus
Transformation, Expression and Activity Analysis of Recombinant Staphylococcus Autolysin in Bacillus
Isolation,Partial Purification and Characterisation of Bacteriocins from Fermented Foods
Isolation,Partial Purification and Characterisation of Bacteriocins from Fermented Foods
MFC- Caulobactercrescentus as an Electrogen in A Dual Chambered Microbial Fuel Cell With The Novel Proton Exchange Membrane
MFC- Caulobactercrescentus as an Electrogen in A Dual Chambered Microbial Fuel Cell With The Novel Proton Exchange Membrane
Modelling the cerebellar information code in large-scale realistic circuits – Towards pharmacological predictions and robotic abstractions
Modelling the cerebellar information code in large-scale realistic circuits – Towards pharmacological predictions and robotic abstractions
Admissions Apply Now