Back close

An effective feature selection for heart disease prediction with aid of hybrid kernel SVM

Publication Type : Journal Article

Publisher : Inderscience Publishers

Source : International Journal of Business Intelligence and Data Mining

Url : https://doi.org/10.1504/IJBIDM.2019.101977

Keywords : hybrid kernel support vector machine, HKSVM, feature selection, fish swarm optimisation, support vector machines, SVM, optimal rough fuzzy, Cleveland, Hungarian, Switzerland

Campus : Coimbatore

School : School of Artificial Intelligence - Coimbatore

Year : 2019

Abstract : In today's modern world cardiovascular disease is the most lethal one. This disease attacks a person so instantly that it hardly gets any time to get treated with. So, diagnosing patients correctly on timely basis is the most challenging task for the medical fraternity. In order to reduce the risk of heart disease, effective feature selection and classification based prediction system is proposed. An efficient feature selection is applied on the high dimensional medical data, for selecting the features fish swarm optimisation algorithm is used. After that, selected features from medical dataset are fed to the HKSVM for classification. The performance of the proposed technique is evaluated by accuracy, sensitivity, specificity, precision, recall and f-measure. Experimental results indicate that the proposed classification framework have outperformed by having better accuracy of 96.03% for Cleveland dataset when compared existing SVM method only achieved 91.41% and optimal rough fuzzy classifier achieved 62.25%.

Cite this Research Publication : T. Keerthika, K. Premalatha, An effective feature selection for heart disease prediction with aid of hybrid kernel SVM, International Journal of Business Intelligence and Data Mining, Inderscience Publishers, 2019, https://doi.org/10.1504/IJBIDM.2019.101977

Admissions Apply Now