Qualification: 
Ph.D, MBA, MSc
Email: 
t_ramachandran@cb.amrita.edu

Dr. Ramachandran T. currently serves as Professor in Chemistry and Chairperson, Department of Sciences, School of Engineering, Coimbatore Campus. His areas of research include Industrial Electrochemistry, Batteries and Fuel Cells.

Publications

Publication Type: Journal Article

Year of Publication Publication Type Title

2017

Journal Article

J. Raveendran, P.E., R., Dr. Ramachandran T., Dr. Bipin G. Nair, and Dr. Satheesh Babu T. G., “Fabrication of a disposable non-enzymatic electrochemical creatinine sensor”, Sensors and Actuators B: Chemical, vol. 243, pp. 589 - 595, 2017.[Abstract]


Abstract A disposable non-enzymatic sensor for creatinine was developed by electrodepositing copper on screen printed carbon electrodes. The sensor was characterized using electrochemical and microscopic techniques. Electrochemical detection of creatinine was carried out in phosphate buffer solution of pH 7.4. The estimation was based on the formation of soluble copper-creatinine complex. The formation of copper-creatinine complex was established using the pseudoperoxidase activity of copper-creatinine complex. The sensor showed a detection limit of 0.0746 μM with a linear range of 6–378 μΜ. The sensor exhibited a stable response to creatinine and found to be free from interference from molecules like urea, glucose, ascorbic acid and dopamine. Real sample analysis was carried out with blood serum.

More »»
PDF iconfabrication-of-a-disposable-non-enzymatic-electrochemical-creatinine-sensor-29november2017.pdf

2017

Journal Article

Nithya K., Dr. Asha Sathish, P. Kumar, S., and Dr. Ramachandran T., “Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni(II) ions”, Journal of Industrial and Engineering Chemistry (IF – 4.4), 2017.[Abstract]


Superparamagnetic iron oxide nanoparticles were synthesized using co-precipitation technique by dissolving required stoichiometric proportions (1:2) of Fe2+ and Fe3+ salts in water. Lantana camara extract and ammonia solution were used as the stabilizing and precipitating agents, respectively. The prepared particles were characterized using FTIR, TGA, PSA, SEM–EDAX and zeta potential analysis. This material was successfully adopted for the removal of Ni(II) ions from aqueous solution and the process parameters were optimized. The results indicated the faster kinetics and a remarkably higher adsorption capacity of 227.20mg/g at a pH of 6.0 and an adsorbent dose of 0.05g.

More »»

2016

Journal Article

K. Dhara, Dr. Ramachandran T., Dr. Bipin G. Nair, and Dr. Satheesh Babu T. G., “Au nanoparticles decorated reduced graphene oxide for the fabrication of disposable nonenzymatic hydrogen peroxide sensor”, Journal of Electroanalytical Chemistry, vol. 764, pp. 64-70, 2016.[Abstract]


A simple approach is followed for the fabrication of disposable nonenzymatic hydrogen peroxide (H2O2) sensor using gold nanoparticles decorated reduced graphene oxide (Au/rGO) nanocomposite. Au/rGO nanocomposite was prepared by one pot reduction of graphene oxide and Au(III) ions. The composite was characterized using various spectroscopic and microscopic techniques. The Au/rGO nanocomposite suspension was cast on the indigenously fabricated screen printed electrode (SPE). Voltammetric studies on the modified electrode showed that the Au/rGO nanocomposite modified SPE have enhanced catalytic activity towards H2O2. The sensor exhibited linear relationship in the range from 20 μM to 10 mM with a sensitivity of 1238 μA mM- 1 cm- 2 and a limit of detection 0.1 μM. The sensor also showed excellent selectivity in presence of other electroactive species such as ascorbic acid, dopamine, glucose and uric acid. © 2016 Elsevier B.V. All rights reserved.

More »»

2016

Journal Article

N. Durgadevi, Sunitha, M., Dr. Asha Sathish, Guhan, S., and Dr. Ramachandran T., “Electro Oxidation of Methanol on Ni/Ni-Co Coated SS Mesh Electrode”, Indian Journal of Science and Technology, vol. 9, 2016.[Abstract]


In this work, the oxidation of methanol was carried out using Ni and Ni-Co alloy electrodeposited on stainless steel mesh substrate with a view to replace expensive and sensitive platinum and platinum alloy catalysts. The performance of electrode was assessed through cyclic voltammetry in alkaline media. The operating conditions of the electrode were optimized.

More »»

2016

Journal Article

Nithya K., Dr. Asha Sathish, Kumar, PcSenthil, and Dr. Ramachandran T., “Biosorption of hexavalent chromium from aqueous solution using raw and acid-treated biosorbent prepared from Lantana camara fruit”, Desalination and Water Treatment, vol. 57, no. 27, pp. 25097-25113, 2016.[Abstract]


The aim of the present investigation was to explore the performance of the acid-treated Lantana camara fruit biosorbent in binding hexavalent chromium from aqueous solutions. FTIR studies revealed the contribution of carbohydrates, glycosides, and flavonoids in the biosorbent. EDS analysis exhibited the occurrence of chromium ions after biosorption, whereas SEM image exposed the enhancement of porosity after acid treatment. The isotherm models such as Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin models were studied to depict the mechanism of interaction of the biosorbent with the adsorbate. Besides isotherm models, kinetic studies like pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were also performed to validate the controlling mechanism of biosorption. Langmuir model showed a better fit favoring monolayer adsorption and a high correlation value from the pseudo-second-order model suggests chemisorption. To understand whether the biosorption process releases or absorbs energy, thermodynamic analysis was carried out. The outcome of the findings showed endothermic nature of the process with increased randomness at the solid solution interface. Regeneration studies showed better results with 0.2 M NaOH solutions. The obtained maximum uptake capacity of 83 mg/g with a minimal biomass dosage proves the credible potential of the selected biosorbent in removing toxic hexavalent chromium. © 2016 Balaban Desalination Publications. All rights reserved.

More »»

2016

Journal Article

Aab Pradeep, Raveendran, Jac, Dr. Ramachandran T., Dr. Bipin G. Nair, and Dr. Satheesh Babu T. G., “Computational simulation and fabrication of smooth edged passive micromixers with alternately varying diameter for efficient mixing”, Microelectronic Engineering, vol. 165, pp. 32-40, 2016.[Abstract]


To improve the efficiency of passive micromixers, microchannels of varying geometry have been widely studied. A highly efficient passive micromixer was developed by alternatively varying the cross-sectional diameter along the flow. Microfluidic channels of various geometries were designed and the fluid flow patterns were studied using COMSOL Multiphysics. The extent of mixing in the microchannels for the various designs were analyzed and the most efficient micromixer was further optimized for best mixing performance. The optimized design was fabricated using direct laser write lithography. The spin speed, exposure energy, baking temperature, baking and development time were observed to play an important role in fabrication. Experimental evaluation of the simulation results was carried out by injecting coloured solutions through the PDMS microchannels and by electrochemical studies.

More »»

2015

Journal Article

Ka Dhara, Dr. Ramachandran T., Dr. Bipin G. Nair, and Dr. Satheesh Babu T. G., “Single step synthesis of Au-CuO nanoparticles decorated reduced graphene oxide for high performance disposable nonenzymatic glucose sensor”, Journal of Electroanalytical Chemistry, vol. 743, pp. 1-9, 2015.[Abstract]


A nonenzymatic electrochemical glucose sensor was fabricated using gold-copper oxide nanoparticles decorated reduced graphene oxide (Au-CuO/rGO). A novel one step chemical process was employed for the synthesis of nanocomposite. Morphology and crystal planes of the nanocomposite were characterized using high resolution scanning electron microscopy (HRSEM) and X-ray diffraction (XRD) respectively. The Au-CuO/rGO nanocomposite was dispersed in N,N-dimethyl formamide (DMF) and drop-casted on the working area of the indigenously fabricated screen printed electrode (SPE). The sensor showed good electrocatalytic activity in alkaline medium for the direct electrooxidation of glucose with linear detection range of 1 μM to 12 mM and a lower detection limit of 0.1 μM. The sensor exhibited an excellent sensitivity 2356 μA mM- 1 cm- 2. Sensor was used for the determination of serum glucose concentration and the results obtained were compared with commercially available test strips. © 2015 Elsevier B.V. All rights reserved.

More »»
PDF iconsingle-step-synthesis-of-au-cuo-nanoparticles-decorated-reduced-graphene-oxide-for-high-performance-disposable-nonenzymatic-glucose-sensor-2015.pdf

2015

Journal Article

Dr. Suneesh P. V., Sara, V. Vidhu, Dr. Ramachandran T., Dr. Bipin G. Nair, and Dr. Satheesh Babu T. G., “Co-Cu alloy nanoparticles decorated TiO2 nanotube arrays for highly sensitive and selective nonenzymatic sensing of glucose”, Sensors and Actuators, B: Chemical, vol. 215, pp. 337-344, 2015.[Abstract]


A nonenzymatic glucose sensor was fabricated by electrodepositing cobalt rich cobalt-copper alloy nanoparticles (Co-CuNPs) on vertically aligned TiO2 nanotube (TDNT) arrays. For this, TDNT arrays with tube diameter of 60 nm were synthesized by electrochemical anodization. The composition of the electrodeposited alloy was optimized based on the electrocatalytic activity towards glucose oxidation. This is achieved by controlling the concentration of electrolyte and time of deposition. Chemical composition of the optimized Co-Cu alloy nanoparticles is determined to be Cu0.15Co2.84O4 with fcc crystalline structure. The sensor showed two linear range of detection with high sensitivity of 4651.0 μA mM-1 cm-2 up to 5 mM and 2581.70 μA mM-1 cm-2 from 5 mM to 12 mM with a lower detection limit of 0.6 μM (S/N = 3). The sensor is highly selective to glucose in the presence of various exogeneous and endogeneous interfering species and other sugars. The response of the sensor towards blood serum was in good agreement with that of commercially available glucose sensors. © 2015 Elsevier B.V.

More »»
PDF iconco–cu-alloy-nanoparticles-decorated-tio2-nanotube-arrays-for-highlysensitive-and-selective-nonenzymatic-sensing-of-glucose-2fdecember2015.pdf

2015

Journal Article

K. Dhara, Dr. Ramachandran T., Dr. Bipin G. Nair, and Dr. Satheesh Babu T. G., “Highly sensitive and wide-range nonenzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles”, Microchimica Acta, 2015.[Abstract]


A nanocomposite consisting of reduced graphene oxide decorated with palladium-copper oxide nanoparticles (Pd-CuO/rGO) was synthesized by single-step chemical reduction. The morphology and crystal structure of the nanocomposite were characterized by field-emission scanning electron microscopy, high resolution transmission electron microscopy and X-ray diffraction analysis. A 3-electrode system was fabricated by screen printing technology and the Pd-CuO/rGO nanocomposite was dropcast on the carbon working electrode. The catalytic activity towards glucose in 0.2 M NaOH solutions was analyzed by linear sweep voltammetry and amperometry. The steady state current obtained at a constant potential of +0.6 V (vs. Ag/AgCl) showed the modified electrode to possess a wide analytical range (6 μM to 22 mM), a rather low limit of detection (30 nM), excellent sensitivity (3355 μA∙mM−1∙cm−2) and good selectivity over commonly interfering species and other sugars including fructose, sucrose and lactose. The sensor was successfully employed to the determination of glucose in blood serum. [Figure not available: see fulltext.] © 2015 Springer-Verlag Wien

More »»
PDF iconhighly-sensitive-and-wide-range-nonenzymatic-disposable-glucose-sensor-based-screen-printed-carbon-electrode-modified-with-reduced-graphene-oxide-and-pd-cuo-nanoparticles-08july2015.pdf

2006

Journal Article

P. Na Magudeswaran, Kamalakkannan, Na, and Dr. Ramachandran T., “Water quality of rivers Siruvani, Bhavani and Noyyal using alternate water quality index”, Pollution Research, vol. 25, pp. 519-523, 2006.[Abstract]


Political decision-makers, non-technical water personals and the common people usually have neither the time nor the training to study and understand the large numbers of water quality parameters and its significance. Since "Water quality and pollution" were relative terms, it is essential to determine the quality of water in view of its utilization as a source of potable water. The Water Quality Index (WQI) presented here is a unit less number ranging from 1 to 100. NSF method of WQI is used to calculate the quality of Siruvani, Bhavani and Noyyal which are used as a source of potable water. To determine the WQI, nine water quality parameters are measured namely DO, pH, BOD, Temperature, Turbidity, Fecal coliform, Total Solids, Nitrates, Phosphates. Determination of change in temperature and BOD is time consuming. Almost, the increase in content of Nitrogen and Phosphate has the same effect on water quality. Hence an alternative WQI formula is proposed here to calculate the water quality value of river Siruvani, Bhavani and Noyyal. The calculated WQI values are well in agreement with the WQI value calculated using standard formula. More »»

Publication Type: Conference Proceedings

Year of Publication Publication Type Title

2016

Conference Proceedings

R. P.E, A.L, P., Dr. Satheesh Babu T. G., and Dr. Ramachandran T., “Electrochemical synthesis of graphene”, International Conference on Advanced Materials, SCICON’16. 2016.

2016

Conference Proceedings

J. Raveendran, Pradeep, A., Dr. Ramachandran T., Dr. Satheesh Babu T. G., and Dr. Bipin G. Nair, “Design and Fabrication of Three Layered Lab-on-a-chip for Electrochemical Detection of Multiple Analytes”, International Conference on Advanced Materials, SCICON’16,. 2016.

207
PROGRAMS
OFFERED
5
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
9th
RANK(INDIA):
NIRF 2017
150+
INTERNATIONAL
PARTNERS