Back close

Electrodeposition of Lead-Free Solder Materials for Microelectronic Packaging

Start Date: Tuesday, Mar 01,2011

School: School of Engineering, Coimbatore

Funded by:DRDO
Electrodeposition of Lead-Free Solder Materials for Microelectronic Packaging

The primary objective of the project is to develop soft, compliant, lead-free, low-melting-temperature solder materials by electrodeposition. These materials are candidates to replace lead-tin alloys in flip-chip technology for microelectronic packaging.

Specifically, the goals are:

  • Identify the optimum process conditions for electrodeposition of lead-free alloys such as tin-bismuth (SnBi) and tin-indium (SnIn).
  • Demonstrate the feasibility of these alloys for microfabricating chip connection bumps on silicon substrates.

This is a collaborative project with Dr. Madhav Datta, Chief Scientist, Cooligy Precision Cooling, Emerson Network Power, Mountain View, CA, and Adjunct Professor, Department of Chemical Engineering and Materials Science, Amrita University, Coimbatore, India.

Lab Facilities

  • Potentiostat/Galvanostat, Pine Instruments
  • Rotating Disk Electrode Setup, Pine Instruments
  • DC and Pulsed Power Supply, Dynatronix Inc.
  • Diamond Saw and Accessories, Chennai Metco
  • Grinder and Polisher, Chennai Metco

Related Projects

Design of a Compact and High Efficient Rectenna for RF Energy Harvesting
Design of a Compact and High Efficient Rectenna for RF Energy Harvesting
Development of Functionally-Graded Aluminium Metal Matrix Composites and to Investigate the Mechanical and Tribological Properties
Development of Functionally-Graded Aluminium Metal Matrix Composites and to Investigate the Mechanical and Tribological Properties
Investigation on Carbon Nano Fiber Reinforced Polyether Ether Ketone/Polyether Imides as Polymer Composite Container for Long Time Nuclear Waste Disposal
Investigation on Carbon Nano Fiber Reinforced Polyether Ether Ketone/Polyether Imides as Polymer Composite Container for Long Time Nuclear Waste Disposal
An Edge-based Cyber-Physical System for Smart Polyhouse Solar Drying of Agricultural Food Products
An Edge-based Cyber-Physical System for Smart Polyhouse Solar Drying of Agricultural Food Products
Nanostructured iron-based mixed metal oxide photovoltaic thin films
Nanostructured iron-based mixed metal oxide photovoltaic thin films
Admissions Apply Now