Qualification: 
Ph.D
manzoork@aims.amrita.edu

Dr. Manzoor Koyakutty is a Professor at Amrita Centre for Nanosciences and Molecular Medicine specializing in the area of cancer-nanomedicine. Dr. Manzoor joined ACNSMM in June 2007. Graduating with an MSc in Physics (1998), Dr. Manzoorhad joined Defence Research and Development Organization (DRDO), Ministry of Defence, Govt. of India, as staff-scientist and worked for 10 years where he gained extensive research experience in the design and development of functional nanosystems for defense applications. He completed PhD (2004) in `Doped Semiconductor Nanocrystals' under the guidance of Dr. S. R. Vadera, Director, DRDO, and Prof. T. R. N. Kutty, Indian Institute of Science, Bangalore. During his tenure at DRDO, Govt. of India appreciated his work by conferring prestigious awards like "DRDO Technology Developer of the Year 2006," "National Science Day Award – 2005," "DRDO Young Scientist of the Year 2004" and "Laboratory Scientist of the Year 2003".

Presently, his team at Amrita is working in the areas of multifunctional nanomedicines for targeting keyoncogenic pathways in drug resistant cancer cells and cancer stem cells, theragnostic nanomedicines for imageguided RF hyperthermia & chemotherapy, nano-siRNA conjugates for gene silencing in cancer stem cells, multimodal contrast agent for combined MR- SPECT- NIR imaging, cancer-nanoimmunotherapeutics, and ramanspectro-pathology for early cancer detection.

In the field of nanomedicine, Dr. Manzoor has received ‘Marie-Curie International Incoming Fellowship’ from European Unionand worked with Erasmus Medical University, The Netherlands, for developing `Peptide targetednanophotomedicines for molecular imaging guided photodynamic therapy of cancer'. This technology was licensed to a company M/S Nano4Thearpy, The Netherlands and is currently undergoing preclinical regulatory testing. Dr. Manzoor has published nearly 60 international papers in Nanoscience and Nanomedicine with h-index 28 andcitations 2434 (Feb 2015). He has filed 16 international patents of which 2 US and one Japan patents are issued. He is a member in the Editorial Board of the journal `Nanomedicine:NBM’ and an expert member in Nano-Biotechnology Task Force, Govt. of India. He is also a member in the European Society of Nanomedicine, European Foundation of Clinical Nanomedicine, American Association of Nanomedicine and Society of Biomaterials and Artificial Organs.

Publications

Publication Type: Journal Article

Year of Publication Publication Type Title

2017

Journal Article

R. Ramachandran, Junnuthula, V. Reddy, Gowd, S., Ashokan, A., Thomas, J., Peethambaran, R., Thomas, A., Unni, A. Kodakara K., Panikar, D., Shantikumar V Nair, and Dr. Manzoor K., “Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma.”, Sci Rep, vol. 7, p. 43271, 2017.[Abstract]


Localized and controlled delivery of chemotherapeutics directly in brain-tumor for prolonged periods may radically improve the prognosis of recurrent glioblastoma. Here, we report a unique method of nanofiber by fiber controlled delivery of anti-cancer drug, Temozolomide, in orthotopic brain-tumor for one month using flexible polymeric nano-implant. A library of drug loaded (20 wt%) electrospun nanofiber of PLGA-PLA-PCL blends with distinct in vivo brain-release kinetics (hours to months) were numerically selected and a single nano-implant was formed by co-electrospinning of nano-fiber such that different set of fibres releases the drug for a specific periods from days to months by fiber-by-fiber switching. Orthotopic rat glioma implanted wafers showed constant drug release (116.6 μg/day) with negligible leakage into the peripheral blood (<100 ng) rendering ~1000 fold differential drug dosage in tumor versus peripheral blood. Most importantly, implant with one month release profile resulted in long-term (>4 month) survival of 85.7% animals whereas 07 day releasing implant showed tumor recurrence in 54.6% animals, rendering a median survival of only 74 days. In effect, we show that highly controlled drug delivery is possible for prolonged periods in orthotopic brain-tumor using combinatorial nanofibre libraries of bulk-eroding polymers, thereby controlling glioma recurrence.

More »»
PDF icon theranostic-3-dimensional-nano-brain-implant-for-prolonged-and-localized-treatment-of-recurrent-glioma.pdf

2016

Journal Article

Aab Sasidharan, Swaroop, Sa, Chandran, Pab, Shantikumar V Nair, and Dr. Manzoor K., “Cellular and molecular mechanistic insight into the DNA-damaging potential of few-layer graphene in human primary endothelial cells”, Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 12, pp. 1347-1355, 2016.[Abstract]


Despite graphene being proposed for a multitude of biomedical applications, there is a dearth in the fundamental cellular and molecular level understanding of how few-layer graphene (FLG) interacts with human primary cells. Herein, using human primary umbilical vein endothelial cells as model of vascular transport, we investigated the basic mechanism underlying the biological behavior of graphene. Mechanistic toxicity studies using a battery of cell based assays revealed an organized oxidative stress paradigm involving cytosolic reactive oxygen stress, mitochondrial superoxide generation, lipid peroxidation, glutathione oxidation, mitochondrial membrane depolarization, enhanced calcium efflux, all leading to cell death by apoptosis/necrosis. We further investigated the effect of graphene interactions using cDNA microarray analysis and identified potential adverse effects by down regulating key genes involved in DNA damage response and repair mechanisms. Single cell gel electrophoresis assay/Comet assay confirmed the DNA damaging potential of graphene towards human primary cells. © 2016 Elsevier Inc.

More »»

2016

Journal Article

V. H. Somasundaram, Pillai, R., Malarvizhi, G., Ashokan, A., Gowd, S., Peethambaran, R., Palaniswamy, S., Unni, A. K. K., Nair, S., and Dr. Manzoor K., “Biodegradable Radiofrequency Responsive Nanoparticles for Augmented Thermal Ablation Combined with Triggered Drug Release in Liver Tumors”, ACS Biomaterials Science and Engineering, vol. 2, pp. 768-779, 2016.[Abstract]


Radiofrequency ablation (RFA) and doxorubicin (Dox) chemotherapy are separately approved for liver cancer therapy; however, both have limited success in the clinic due to suboptimal/nonuniform heating and systemic side effects, respectively. Here, we report a biodegradable nanoparticle (NP) system showing excellent RF hyperthermic response together with the ability to locally deliver Dox in the liver under RF trigger and control. The nanosystem was prepared by doping a clinically permissible dose (∼4.3 wt %, 0.03 ppm) of stannous ions in alginate nanoparticles (∼100 nm) coloaded with Dox at ∼13.4 wt % concentration and surface conjugated with galactose for targeting asialo-glycoprotein receptors in liver tumors. Targeted NP-uptake and increased cytotoxicity when combined with RF exposure was demonstrated in HEPG2 liver cancer cells. Following in vitro (chicken liver phantom) demonstration of locally augmented RF thermal response, in vivo scintigraphic imaging of 99Tc-labeled NPs was performed to optimize liver localization in Sprague-Dawley (SD) rats. RF ablation was performed in vivo using a cooled-tip probe, and uniformly enhanced (∼44%) thermal ablation was demonstrated with magnetic resonance imaging along with RF-controlled Dox release. In orthotopic rat liver tumor models, real-time infrared imaging revealed significantly higher (∼20 °C) RF thermal response at the tumor site, resulting in uniform augmented ablation (∼80%) even at a low RF power exposure of 15 W for just 1 min duration. Being a clinically acceptable, biodegradable material, alginate nanoparticles hold strong translational potential for augmented RF hyperthermia combined with triggered drug release.

More »»

2015

Journal Article

S. Narayanan, Dr. Ullas Mony, Vijaykumar, D. K., Dr. Manzoor K., Dr. Bindhu Paul, and Dr. Deepthy Menon, “Sequential release of epigallocatechin gallate and paclitaxel from PLGA-casein core/shell nanoparticles sensitizes drug-resistant breast cancer cells”, Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 11, pp. 1399-1406, 2015.[Abstract]


Nanomedicines consisting of combinations of cytotoxic drugs and molecular targeted therapeutics which inhibit specific downstream signals are evolving as a novel paradigm for breast cancer therapy. This research addresses one such combination of Paclitaxel (Ptx), having several adversities related to the activation of NF-κB pathway, with Epigallocatechin gallate (EGCG), a multiple signaling inhibitor, encapsulated within a targeted core/shell PLGA-Casein nanoparticle. The sequential release of EGCG followed by Ptx from this core/shell nanocarrier sensitized Ptx resistant MDA-MB-231 cells to Ptx, induced their apoptosis, inhibited NF-κB activation and downregulated the key genes associated with angiogenesis, tumor metastasis and survival. More importantly, Ptx-induced expression of P-glycoprotein was repressed by the nanocombination both at the protein and gene levels. This combination also offered significant cytotoxic response on breast cancer primary cells, indicating its translational value. From the Clinical Editor: Breast cancer is the most common cancer in women worldwide. As well as surgery, chemotherapy plays a major role in the treatment of breast cancer. The authors investigated in this article the combination use of a chemotherapeutic agent, Paclitaxel (Ptx), and an inhibitor of NF-?B pathway, packaged in a targeted nano-based delivery platform. The positive results provided a new pathway for future clinical use of combination chemotherapy in breast cancer. © 2015 Elsevier Inc.

More »»

2015

Journal Article

M. G. Sangeet Nair, Dr. Ullas Mony, Dr. Deepthy Menon, Dr. Manzoor K., Sidharthan, N., Pavithran, K., Shantikumar V Nair, and Krishnakumar N. Menon, “Development and molecular characterization of polymeric micro-nanofibrous scaffold of a defined 3-D niche for in vitro chemosensitivity analysis against acute myeloid leukemia cells”, International journal of nanomedicine, 2015.[Abstract]


Standard in vitro drug testing employs 2-D tissue culture plate systems to test anti-leukemic drugs against cell adhesion-mediated drug-resistant leukemic cells that harbor in 3-D bone marrow microenvironments. This drawback necessitates the fabrication of 3-D scaffolds that have cell adhesion-mediated drug-resistant properties similar to in vivo niches. We therefore aimed at exploiting the known property of polyurethane (PU)/poly-L-lactic acid (PLLA) in forming a micro-nanofibrous structure to fabricate unique, not presented before, as far as we are aware, 3-D micro-nanofibrous scaffold composites using a thermally induced phase separation technique. Among the different combinations of PU/PLLA composites generated, the unique PU/PLLA 60:40 composite displayed micro-nanofibrous morphology similar to decellularized bone marrow with increased protein and fibronectin adsorption. Culturing of acute myeloid leukemia (AML) KG1a cells in FN-coated PU/PLLA 60:40 shows increased cell adhesion and cell adhesion-mediated drug resistance to the drugs cytarabine and daunorubicin without changing the original CD34(+)/CD38(-)/CD33(-) phenotype for 168 hours compared to fibronectin tissue culture plate systems. Molecularly, as seen in vivo, increased chemoresistance is associated with the upregulation of anti-apoptotic Bcl2 and the cell cycle regulatory protein p27(Kip1) leading to cell growth arrest. Abrogation of Bcl2 activity by the Bcl2-specific inhibitor ABT 737 led to cell death in the presence of both cytarabine and daunorubicin, demonstrating that the cell adhesion-mediated drug resistance induced by Bcl2 and p27(Kip1) in the scaffold was similar to that seen in vivo. These results thus show the utility of a platform technology, wherein drug testing can be performed before administering to patients without the necessity for stromal cells.

More »»

2014

Journal Article

S. A. Shankarappa, Dr. Manzoor K., and Nair, S. V., “Efficacy versus Toxicity-The Ying and Yang in Translating Nanomedicines”, Nanomaterials and Nanotechnology, vol. 4, pp. 4–23, 2014.[Abstract]


Nanomedicine, as a relatively new offshoot of nanotechnology, has presented vast opportunities in biomedical research for developing novel strategies to treat diseases. In the past decade, there has been a significant increase in in vitro and preclinical studies addressing the benefits of nanomedicines. In this commentary, we focus specifically on the efficacy- and toxicity-related translational challenges of nanocarrier-mediated systems, and briefly discuss possible strategies for addressing such issues at in vitro and preclinical stages. We address questions related specifically to the balance between toxicity and efficacy, a balance that is expected to be substantially different for nanomedicines compared to that for a free drug. Using case studies, we propose a ratiometric assessment tool to quantify the overall benefit of nanomedicine as compared to free drugs in terms of efficacy and toxicity. The overall goal of this commentary is to emphasize the strategies that promote the translation of nanomedicines, especially by learning lessons from previous translational failures of other drugs and devices, and to apply these lessons to critically assess data at the basic stages of nanomedicinal research. More »»

2014

Journal Article

C. Ma Girish, Iyer, Sb, Thankappan, Kb, Rani, V. V. Da, Gowd, G. Sa, Menon, Da, Nair, Sa, and Dr. Manzoor K., “Rapid detection of oral cancer using Ag-TiO2 nanostructured surface-enhanced Raman spectroscopic substrates”, Journal of Materials Chemistry B, vol. 2, pp. 989-998, 2014.[Abstract]


The unique vibrational signatures of the biochemical changes in tissue samples may enable the Raman spectroscopic detection of diseases, like cancer. However, the Raman scattering cross-section of tissues is relatively low and hence the clinical translation of such methods faces serious challenges. In this study, we report a simple and efficient surface-enhanced Raman scattering (SERS) substrate, for the rapid and label-free detection of oral cancer. Raman active silver (Ag) surfaces were created on three distinct titania (TiO 2) hierarchical nanostructures (needular, bipyramidal and leaf-like) by a process involving a hydrothermal reaction, followed by the sputter deposition of Ag nanoparticles (average size: 30 nm). The resulting SERS substrate efficiencies, measured using crystal violet (CV) as an analyte molecule, showed a highest analytical enhancement factor of ∼106, a detection limit ∼1 nM and a relative standard deviation of the Raman peak maximum of ∼13% for the nano-leafy structure. This substrate was used to analyze tissue sections of 8 oral cancer patients (squamous cell carcinoma of tongue) comprising a total of 24 normal and 32 tumor tissue sections and the recorded spectra were analyzed by principal component analysis and discriminant analysis. The tissue spectra were correctly classified into tumor and normal groups, with a diagnostic sensitivity of 100%, a specificity of 95.83% and the average processing time per patient of 15-20 min. This indicates the potential translation of the SERS method for the rapid and accurate detection of cancer. © 2014 The Royal Society of Chemistry.

More »»

2013

Journal Article

Pa Chandran, Kavalakatt, Aa, Malarvizhi, G. La, Vasanthakumari, D. R. V. Na, Retnakumari, A. Pa, Sidharthan, Nb, Pavithran, Kb, Nair, Sa, and Dr. Manzoor K., “Epigenetics targeted protein-vorinostat nanomedicine inducing apoptosis in heterogeneous population of primary acute myeloid leukemia cells including refractory and relapsed cases”, Nanomedicine: Nanotechnology, Biology, and Medicine, 2013.[Abstract]


Aberrant epigenetics play a key role in the onset and progression of acute myeloid leukemia (AML). Herein we report in silico modelling based development of a novel, protein-vorinostat nanomedicine exhibiting selective and superior anti-leukemic activity against heterogeneous population of AML patient samples (n = 9), including refractory and relapsed cases, and three representative cell lines expressing CD34+/CD38- stem cell phenotype (KG-1a), promyelocytic phenotype (HL-60) and FLT3-ITD mutation (MV4-11). Nano-vorinostat having   100 nm size exhibited enhanced cellular uptake rendering significantly lower IC50 in AML cell lines and patient samples, and induced enhanced HDAC inhibition, oxidative injury, cell cycle arrest and apoptosis compared to free vorinostat. Most importantly, nanomedicine showed exceptional single-agent activity against the clonogenic proliferative capability of bone marrow derived leukemic progenitors, while remaining non-toxic to healthy bone marrow cells. Collectively, this epigenetics targeted nanomedicine appears to be a promising therapeutic strategy against various French-American-British (FAB) classes of AML. © 2013 Elsevier Inc. All rights reserved.

More »»

2012

Journal Article

A. Sasidharan, Panchakarla, L. S., Sadanandan, A. R., Ashokan, A., Chandran, P., Girish, C. Madathil, Menon, D., Nair, S. V., Rao, C. N. R., and Dr. Manzoor K., “Hemocompatibility and macrophage response of pristine and functionalized graphene.”, Small, vol. 8, no. 8, pp. 1251-63, 2012.[Abstract]


<p>Graphene and its derivatives are being proposed for several important biomedical applications including drug delivery, gene delivery, contrast imaging, and anticancer therapy. Most of these applications demand intravenous injection of graphene and hence evaluation of its hemocompatibility is an essential prerequisite. Herein, both pristine and functionalized graphene are extensively characterized for their interactions with murine macrophage RAW 264.7 cells and human primary blood components. Detailed analyses of the potential uptake by macrophages, effects on its metabolic activity, membrane integrity, induction of reactive oxygen stress, hemolysis, platelet activation, platelet aggregation, coagulation cascade, cytokine induction, immune cell activation, and immune cell suppression are performed using optimized protocols for nanotoxicity evaluation. Electron microscopy, confocal Raman spectral mapping, and confocal fluorescence imaging studies show active interaction of both the graphene systems with macrophage cells, and the reactive oxygen species mediated toxicity effects of hydrophobic pristine samples are significantly reduced by surface functionalization. In the case of hemocompatibility, both types of graphene show excellent compatibility with red blood cells, platelets, and plasma coagulation pathways, and minimal alteration in the cytokine expression by human peripheral blood mononuclear cells. Further, both samples do not cause any premature immune cell activation or suppression up to a relatively high concentration of 75 μg mL(-1) after 72 h of incubation under in vitro conditions. This study clearly suggests that the observed toxicity effects of pristine graphene towards macrophage cells can be easily averted by surface functionalization and both the systems show excellent hemocompatibility.</p>

More »»

2012

Journal Article

A. Pa Retnakumari, Hanumanthu, P. La, Malarvizhi, G. La, Prabhu, Rb, Sidharthan, Nb, Thampi, M. Vc, Menon, Da, Mony, Ua, Menon, Ka, Keechilat, Pb, Nair, Sa, and Dr. Manzoor K., “Rationally designed aberrant kinase-targeted endogenous protein nanomedicine against oncogene mutated/amplified refractory chronic myeloid leukemia”, Molecular Pharmaceutics, vol. 9, pp. 3062-3078, 2012.[Abstract]


Deregulated protein kinases play a very critical role in tumorigenesis, metastasis, and drug resistance of cancer. Although molecularly targeted small molecule kinase inhibitors (SMI) are effective against many types of cancer, point mutations in the kinase domain impart drug resistance, a major challenge in the clinic. A classic example is chronic myeloid leukemia (CML) caused by BCR-ABL fusion protein, wherein a BCR-ABL kinase inhibitor, imatinib (IM), was highly successful in the early chronic phase of the disease, but failed in the advanced stages due to amplification of oncogene or point mutations in the drug-binding site of kinase domain. Here, by identifying critical molecular pathways responsible for the drug-resistance in refractory CML patient samples and a model cell line, we have rationally designed an endogenous protein nanomedicine targeted to both cell surface receptors and aberrantly activated secondary kinase in the oncogenic network. Molecular diagnosis revealed that, in addition to point mutations and amplification of oncogenic BCR-ABL kinase, relapsed/refractory patients exhibited significant activation of STAT5 signaling with correlative overexpression of transferrin receptors (TfR) on the cell membrane. Accordingly, we have developed a human serum albumin (HSA) based nanomedicine, loaded with STAT5 inhibitor (sorafenib), and surface conjugated the same with holo-transferrin (Tf) ligands for TfR specific delivery. This dual-targeted "transferrin conjugated albumin bound sorafenib" nanomedicine (Tf-nAlb-Soraf), prepared using aqueous nanoprecipitation method, displayed uniform spherical morphology with average size of ∼150 nm and drug encapsulation efficiency of ∼74%. TfR specific uptake and enhanced antileukemic activity of the nanomedicine was found maximum in the most drug resistant patient sample having the highest level of STAT5 and TfR expression, thereby confirming the accuracy of our rational design and potential of dual-targeting approach. The nanomedicine induced downregulation of key survival pathways such as pSTAT5 and antiapoptotic protein MCL-1 was demonstrated using immunoblotting. This study reveals that, by implementing molecular diagnosis, personalized nanomedicines can be rationally designed and nanoengineered by imparting therapeutic functionality to endogenous proteins to overcome clinically important challenges like molecular drug resistance. © 2012 American Chemical Society.

More »»

2012

Journal Article

Aa Sasidharan, Panchakarla, L. Sb, Sadanandan, A. Ra, Ashokan, Aa, Chandran, Pa, Girish, C. Ma, Menon, Da, Shantikumar V. Nair, Rao, C. N. Rb, and Dr. Manzoor K., “Hemocompatibility and macrophage response of pristine and functionalized graphene”, Small, vol. 8, pp. 1251-1263, 2012.[Abstract]


Graphene and its derivatives are being proposed for several important biomedical applications including drug delivery, gene delivery, contrast imaging, and anticancer therapy. Most of these applications demand intravenous injection of graphene and hence evaluation of its hemocompatibility is an essential prerequisite. Herein, both pristine and functionalized graphene are extensively characterized for their interactions with murine macrophage RAW 264.7 cells and human primary blood components. Detailed analyses of the potential uptake by macrophages, effects on its metabolic activity, membrane integrity, induction of reactive oxygen stress, hemolysis, platelet activation, platelet aggregation, coagulation cascade, cytokine induction, immune cell activation, and immune cell suppression are performed using optimized protocols for nanotoxicity evaluation. Electron microscopy, confocal Raman spectral mapping, and confocal fluorescence imaging studies show active interaction of both the graphene systems with macrophage cells, and the reactive oxygen species mediated toxicity effects of hydrophobic pristine samples are significantly reduced by surface functionalization. In the case of hemocompatibility, both types of graphene show excellent compatibility with red blood cells, platelets, and plasma coagulation pathways, and minimal alteration in the cytokine expression by human peripheral blood mononuclear cells. Further, both samples do not cause any premature immune cell activation or suppression up to a relatively high concentration of 75 μg mL -1 after 72 h of incubation under in vitro conditions. This study clearly suggests that the observed toxicity effects of pristine graphene towards macrophage cells can be easily averted by surface functionalization and both the systems show excellent hemocompatibility. Surface functionalization reduces the toxicity of pristine graphene towards macrophage cells in vitro. Macrophages show relatively high intracellular uptake of functionalized, hydrophilic graphene compared to hydrophobic pristine graphene. The excellent compatibility of both types of graphene with human blood components is demonstrated. Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.

More »»

2012

Journal Article

V. Ga Deepagan, Sarmento, Bab c, Menon, Da, Nascimento, Ac, Jayasree, Aa, Sreeranganathan, Ma, Dr. Manzoor K., Nair, S. Va, and Rangasamy, Ja, “In vitro targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles”, Nanomedicine, vol. 7, pp. 507-519, 2012.[Abstract]


Background: Targeted cancer therapy has been extensively developed to improve the quality of treatment by reducing the systemic exposure of cytotoxic drug. Polymeric nanoparticles with conjugated targeting agents are widely investigated because they offer tunability in particle size, drug release profile and biocompatibility. Materials &amp; methods: Here, we have prepared targeted multifunctional nanoparticles composed of a poly(lactic-co-glycolic acid) matrix, ZnS:Mn 2+ quantum dots and camptothecin, and targeted them to EGF receptor overexpressing cells with a cetuximab antibody. Results: Physicochemical characterization of multifunctional nanoparticles showed stable particles with sizes of &lt;200 nm. In vitro drug release and blood contact studies showed a sustained release profile, with limited hemolysis. In vitro cytotoxicity and cell uptake studies were carried out in A549, KB and MFC-7 cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, FACS, fluorescent microscopic images and spectroflourimetry. Conclusion: Our studies revealed higher camptothecin activity and uptake in cell lines that overexpress the EGF receptor. All these results suggest that anti-EGF receptor cetuximab-conjugated poly(lactic-co-glycolic acid) multifunctional nanoparticles can be used as a potential nanomedicine against cancer. © 2012 Future Medicine Ltd.

More »»

Publication Type: Patent

Year of Publication Publication Type Title

2014

Patent

Dr. Manzoor K., Retnakumari, A., and Shantikumar V Nair, “A core-shell nanostructure on the basis of proteins with corresponding therapeutic agents”, U.S. Patent PCT/IN2013/0001412014.[Abstract]


The present invention is related to the design and synthesis of nanomedicine comprising of a protein-protein composite or core-shell nanoparticle, where one protein carries one type of therapeutic molecule and second protein carries another type of therapeutic molecule. This nanomedicine formulation is intended for the treatment of diseases including cancer. To be specific, the current invention is designed to deliver two different types of therapeutic molecules in sequence or in combination using a single entity of nanoparticle formed by two different proteins that carry two therapeutic molecules separately

More »»

2014

Patent

Dr. Manzoor K., Ashokan, A., and Shantikumar V Nair, “The art, method, manner, process and system of a nano-biomineral for multi-modal contrast imaging and drug delivery”, U.S. Patent PCT/IN2013/0001432014.[Abstract]


The present invention relates to a nano-sized material that can provide contrast enhancement for multple imaging methods and also deliver therapeutic molecules such as nucleic acids or chemo drugs to diseased sites such as cancer. In particular, the present invention relates to nano-sized synthetic calcium phosphates and calcium apatite nanomaterials showing simultaneous contrast for at least any two of the medical imaging modalities including radio, raman-, near-infrared fluroscence-, magnetic resonance and x-ray-imaging.

More »»

2014

Patent

Dr. Manzoor K., Ashokan, A., Dr. Deepthy Menon, and Shantikumar V Nair, “The art, method, manner, process and system of multifunctional nanobiomaterial for molecular imaging and drug- delivery”, U.S. Patent PCT/IN2013/0001422014.[Abstract]


The present invention relates to a nano-sized material that can provide contrast enhancement for multiple molecular imaging mthods and also deliver therapeutic nucleic acids or chemodrugs at a specific site of disease such as cancer. In particular, the present invention relates to a nanosized synthetic calcium apatite based materials showing contrast imaging for visible to near-infrared fluroscence, magnetic resonance imaging and x-ray imaging together with targeted delivery of nucleic acid drugs (DNA or RNA) to specific cancer types.

More »»

2014

Patent

Dr. Deepthy Menon, Shantikumar V. Nair, Dr. Manzoor K., Rani, V. V. Divya, and Lakshmanan, V. Kumar, “Nano surface modified metallic titanium implants for orthopaedic or dental applications and method of manufacturing thereof”, U.S. Patent PCT/IN2012/0007862014.[Abstract]


The present invention relates to a metallic implant product developed with surface nano features by means of wet hydrothermal technique, which provides better bio-compatibility and improved osteo-integration for specific use in orthopaedic and dental applications. Methods of creating nano features on surfaces of titanium di-oxide (Titania) on Ti implants and the corresponding improved implant behaviour as a consequence under in vivo conditions are demonstrated and proven in this invention.

More »»

2013

Patent

R. Ramachandran, Dr. Manzoor K., and Shantikumar V Nair, “The art, method,manner process and system of fibrous bio-degradable polymeric wafers for the local delivery of therapeutic agents in combinations”, U.S. Patent PCT/IN2013/0001102013.[Abstract]


The present invention is related to flexible, fibrous, biocompatible and biodegradable polymeric wafer consisting of more than one polymeric fibres, each one loaded with different therapeutic agents having mutually exclusive synergistic activity. The wafer is capable of delivering the drugs locally in to the deceased site like tumor, inflammation, wound etc in a controlled and sustained fashion for enhanced therapeutic effect. The combination of drugs loaded in the wafer is chosen in such a way that the second or consecutive drugs will enhance or improve the therapeutic effect of the first drug

More »»

2013

Patent

Dr. Manzoor K., PARWATHY, C., Archana, P. R., and Shantikumar V Nair, “Polymer - polymer or polymer - protein core - shell nano medicine loaded with multiple drug molecules”, U.S. Patent PCT/IN2013/0001082013.[Abstract]


The present invention relates to the method of synthesis of core-shell nano medicine serving as a novel platform for the encapsulation of multiple therapeutic molecules enabling combinatorial therapy against diseases including cancer, inflammatory and auto-immune diseases and its associated manifestations. The core-shell nano-construct comprises of a biodegradable and biocompatible polymer as the core and another polymer or protein as the shell, aiding following constructs (i) polymer core-polymer shell and (ii) polymer core-protein shell. The core-shell nano medicine is developed in a manner to encapsulate at least one anti-cancer agent each in both the core and the shell

More »»

207
PROGRAMS
OFFERED
5
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
8th
RANK(INDIA):
NIRF 2018
150+
INTERNATIONAL
PARTNERS