Back close

Essential oils and Bacteriophages as Alternate Strategies to Combat Antimicrobial Resistance in ESKAPE Pathogens

Dept/Center/Lab: Antimicrobial Resistance 

School: School of Biotechnology

Project Incharge:Dr. Geetha Kumar
Co-Project Incharge:Sreelekshmi A. L.
Essential oils and Bacteriophages as Alternate Strategies to Combat Antimicrobial Resistance in ESKAPE Pathogens

In the ongoing battle to combat antimicrobial resistance (AMR), we are investigating two promising avenues: natural products and bacteriophages. Natural products such as essential oils are known to interfere with quorum sensing, a cell-to-cell communication system known to regulate virulence. These quorum sensing inhibitors can therefore attenuate virulence without killing the bacteria. Additionally, these compounds can also modulate the immune response of the host making them very good anti-infectives. Furthermore, since the survival of the pathogen is not at stake, chances of decelopment of resistance are also very minimal.

Another important area of research is focused on isolation and characterization of lytic phages targeting the WHO classified critical priority ESKAPE-pathogens. These phages as well as phage cocktails will be formulated to assess the efficacy with which they can sensitize and kill MDR pathogens. Combinatorial studies using conventional antibiotics along with phages will also be another area of research interest. These research outcomes can potentially identify strategies for the development of targeted therapies aimed at effective control of MDR bacterial infections.

Related Projects

Isolation of Probiotic Lactobacillus Species with Gelatin Binding Property from Curd and Analysis of its Probiotic Attributes
Isolation of Probiotic Lactobacillus Species with Gelatin Binding Property from Curd and Analysis of its Probiotic Attributes
The Discovery of MicroRNAs (miRNAs) that Regulate the Expression of Gelatinase A (Matrix metalloproteinase-2/MMP-2) and B (Matrix metalloproteinase-9/MMP-9) in Colon Cancer Cells
The Discovery of MicroRNAs (miRNAs) that Regulate the Expression of Gelatinase A (Matrix metalloproteinase-2/MMP-2) and B (Matrix metalloproteinase-9/MMP-9) in Colon Cancer Cells
Bacterial Glycan Recognition by Lectins
Bacterial Glycan Recognition by Lectins
Theoretical and Empirical Investigations on the Interaction of Asymmetric Migration and Intrinsic Growth Rate on the Dynamics of Laboratory Metapopulations of Drosophila Melanogaster
Theoretical and Empirical Investigations on the Interaction of Asymmetric Migration and Intrinsic Growth Rate on the Dynamics of Laboratory Metapopulations of Drosophila Melanogaster
Development of New Tools to Reverse Antibiotic Resistance in Pathogens Like Pseudomonas Aeruginosa
Development of New Tools to Reverse Antibiotic Resistance in Pathogens Like Pseudomonas Aeruginosa
Admissions Apply Now