Qualification: 
Ph.D, MS, B-Tech
Email: 
shantinair@aims.amrita.edu

Professor Nair is the Dean of Research to Amrita Vishwa Vidyapeetham, and also the Director of Amrita Centre for Nanosciences and Molecular Medicine (ACNSMM), Health Sciences Campus. Dr. Nair received his Bachelor of Technology degree in Metallurgical Engineering from the Indian Institute of Technology, Bombay, India, in 1976; Master of Science (1978) and Doctor of Engineering Science (1983) degrees in Materials Science and Engineering from Columbia University, New York, USA. He joined the faculty of the Mechanical Engineering Department of the University of Massachusetts, Amherst, MA, USA, in 1985 where he has since taught and conducted research in the area of composite materials. In 2006, he joined Amrita Vishwa Vidyapeetham (University), India. He heads initiatives in the applications of Nanotechnology to Medicine and Energy areas. Areas of research include nanomedicine, tissue engineering, surface modification of materials, and uses of nanomaterials in photovoltaics, supercapacitors and batteries.

In 1986, Dr. Nair received the Presidential Young Investigator Award from President Ronald Reagan for research in composite materials. He is a recipient of numerous awards from the National Science Foundation, USA, and from the industry in materials research. He received the MRSI Medal in Feb 2009 for outstanding contributions in the field of Materials Science. He is the recipient of the Prestigious National Research Award from the Government of India in 2011 for research in Nanosciences. Dr. Nair received the impressive C N R Rao India Nanosciences Award 2014 for outstanding contributions in Nanotechnology Research and Development in India. 

Publications

Publication Type: Journal Article

Year of Publication Publication Type Title

2018

Journal Article

S. Vignesh, Gopalakrishnan, A., Poorna, M. R., Shantikumar V Nair, Dr. Jayakumar Rangasamy, and Dr. Ullas Mony, “Fabrication of micropatterned alginate-gelatin and k-carrageenan hydrogels of defined shapes using simple wax mould method as a platform for stem cell/induced Pluripotent Stem Cells (iPSC) culture”, International Journal of Biological Macromolecules, 2018.[Abstract]


Micropatterning techniques involve soft lithography, which is laborious, expensive and restricted to a narrow spectrum of biomaterials. In this work we report, first time employment of patterned wax moulds for generation of micropatterned alginate-gelatin and κ-carrageenan (κ-CRG) hydrogel systems by a novel, simple and cost effective method. We generated and characterized uniform and reproducible micropatterned hydrogels of varying sizes and shapes such as square projections, square grooves, and circular grids and crisscrossed hillocks. The rheological analysis showed that κ-carrageenan hydrogels had higher gel strength when compared to alginate-gelatin hydrogels. Human Mesenchymal stem cells (hMSCs) and Human Induced Pluripotent Stem Cells (hiPSCs) were found to be cytocompatible with these hydrogels. This micropatterned hydrogel system may have potential application in tissue engineering and also in understanding the basic biology behind the stem cell/iPSC fate.

More »»

2017

Journal Article

S. Sowmya, Dr. Ullas Mony, P., J., Reshma, S., R Kumar, A., Arzate, H., Shantikumar V Nair, and Jayakumar, R., “Tri-Layered Nanocomposite Hydrogel Scaffold for the Concurrent Regeneration of Cementum, Periodontal Ligament, and Alveolar Bone.”, Adv Healthc Mater, 2017.[Abstract]


A tri-layered scaffolding approach is adopted for the complete and concurrent regeneration of hard tissues-cementum and alveolar bone-and soft tissue-the periodontal ligament (PDL)-at a periodontal defect site. The porous tri-layered nanocomposite hydrogel scaffold is composed of chitin-poly(lactic-co-glycolic acid) (PLGA)/nanobioactive glass ceramic (nBGC)/cementum protein 1 as the cementum layer, chitin-PLGA/fibroblast growth factor 2 as the PDL layer, and chitin-PLGA/nBGC/platelet-rich plasma derived growth factors as the alveolar bone layer. The tri-layered nanocomposite hydrogel scaffold is cytocompatible and favored cementogenic, fibrogenic, and osteogenic differentiation of human dental follicle stem cells. In vivo, tri-layered nanocomposite hydrogel scaffold with/without growth factors is implanted into rabbit maxillary periodontal defects and compared with the controls at 1 and 3 months postoperatively. The tri-layered nanocomposite hydrogel scaffold with growth factors demonstrates complete defect closure and healing with new cancellous-like tissue formation on microcomputed tomography analysis. Histological and immunohistochemical analyses further confirm the formation of new cementum, fibrous PDL, and alveolar bone with well-defined bony trabeculae in comparison to the other three groups. In conclusion, the tri-layered nanocomposite hydrogel scaffold with growth factors can serve as an alternative regenerative approach to achieve simultaneous and complete periodontal regeneration. More »»

2017

Journal Article

A. A. Nair, Joseph, J., Dr. Deepthy Menon, Shantikumar V Nair, and Dr. Manitha B. Nair, “Electrospun Yarn Reinforced NanoHA Composite Matrix as a Potential Bone Substitute for Enhanced Regeneration of Segmental Defects.”, Tissue Eng Part A, 2017.[Abstract]


Nanohydroxyapatite (HA) is a well-established synthetic bone substitute with excellent osteoconduction and osteointegration. However, brittleness coupled with slow degradation curtail its load bearing and bone regeneration potential respectively. To address these limitations, nanoHA composite matrix reinforced with electrospun 1D fibrous yarns was fabricated and tested in vitro and in vivo. Different weight percentages (5, 10, 15 wt%) and varying lengths (short and continuous) of PLLA yarns were randomly dispersed in a gelatinous matrix containing nanoHA. This significantly improved the compressive strength as well as work of fracture, especially for continuous yarns at high weight percentages (10 and 15 wt%). Incorporation of yarns did not adversely affect the pore size (50 - 350 µm) or porosity of the scaffolds as well as its in vitro cellular response. Finally, when tested in a critical sized femoral segmental defect in rat, the nanocomposite scaffolds induced osteoblast cell infiltration at two months that subsequently underwent increased mature lamellar bone formation at four months, in both the mid and peripheral defect regions. Histomorphometric analysis demonstrated that both new bone formation and biomaterial degradation were significantly enhanced in the composite scaffold when compared to HA. Overall, the composite matrix reinforced with electrospun yarns proved to be a potential bone substitute having an appropriate balance between mechanical strength, porosity, biodegradation and bone regeneration ability. More »»

2017

Journal Article

G. J. Pillai, Dr. Bindhu Paul, Shantikumar V Nair, and Dr. Deepthy Menon, “Influence of surface passivation of 2-Methoxyestradiol loaded PLGA nanoparticles on cellular interactions, pharmacokinetics and tumour accumulation.”, Colloids Surf B Biointerfaces, vol. 150, pp. 242-249, 2017.[Abstract]


In the present work, 2-Methoxyestradiol [2ME2] loaded PLGA nanoparticles [NPs] were stabilized with Casein or poly(ethylene glycol) [PEG] and evaluated for its cellular interactions, pharmacokinetics and tumour accumulation. Surface stabilized PLGA nanoparticles prepared through a modified emulsion route possessed similar size, surface charge, drug loading and release characteristics. Particle-cell interactions as well as the anti-angiogenesis activity were similar for both nanoformulations in vitro. However, in vivo pharmacokinetics and tumour accumulation of the drug were substantially improved for the PEGylated nanoformulation. Reduced protein binding was observed for PEG stabilized PLGA NPs. Thus, it was demonstrated that nanoencapsulation of 2-ME2 within PEGylated PLGA nanocarrier could improve its half-life and plasma concentration and thereby increase the tumour accumulation.

More »»

2017

Journal Article

A. K. Haridas, Gangaja, B., Srikrishnarka, P., Unni, G. E., A. Nair, S., Shantikumar V Nair, and Dr. Dhamodaran Santhanagopalan, “Spray pyrolysis-deposited nanoengineered TiO2 thick films for ultra-high areal and volumetric capacity lithium ion battery applications”, Journal of Power Sources, vol. 345, pp. 50 - 58, 2017.[Abstract]


Abstract Energy storage technologies are sensitively dependent on electrode film quality, thickness and process scalability. In Li-ion batteries, using additive-free titania (TiO2) as electrodes, we sought to show the potential of spray pyrolysis-deposited nanoengineered films with thicknesses up to 135 μm exhibiting ultra-high areal capacities. Detailed electron microscopic characterization indicated that the achieved thick films are composed of highly crystalline anatase TiO2 particles with sizes on the order of 10–12 nm and porous as well. A 135 μm thick film yielded ultra-high areal and volumetric capacities of 3.7 mAh cm−2 and 274 mAh cm−3, respectively, at 1C rate. Also the present work recorded high Coulombic efficiency and good cycling stability. The best previously achieved capacities for additive-free TiO2 films have been less than 0.25 mAh cm−2 and With additives, best reported areal capacity in the literature has been 2.5 mAh cm−2 at 1C rate, but only with electrode thickness as high as 1400 μm. Formation of through-the-thickness percolation of Ti3+ conductive network upon lithiation contributed substantially for the superior performance. Spray pyrolysis deposition of nanoparticulate TiO2 electrodes have the potential to yield volumetric capacities an order of magnitude higher than the other processes previously reported without sacrificing performance and process scalability. More »»

2017

Journal Article

B. Gangaja, Chandrasekharan, S., Vadukumpully, S., Shantikumar V Nair, and Dr. Dhamodaran Santhanagopalan, “Surface chemical analysis of CuO nanofiber composite electrodes at different stages of lithiation/delithiation”, Journal of Power Sources, vol. 340, pp. 356 - 364, 2017.[Abstract]


Abstract High aspect ratio, electrospun CuO nanofibers have been fabricated and tested for its electrochemical performance as lithium ion battery anode. These nanofibers are composed of CuO nanoparticles about 35–40 nm in size forming good inter-connected network. Fabricated half cells maintained specific capacity of 310 mAh g−1 at 1C rate for 100 cycles and stabilized capacity of about 120 mAh g−1 at 5C rate for 1000 cycles. Ex situ x-ray photoelectron spectroscopy (XPS) was performed to understand the electrodes surface chemical changes at the end of first discharge, first charge and after tenth charge. The solid electrolyte interface (SEI) layer comprised of LiF, Li2CO3 and Li2O while their quantity varied depending on the stage of lithiation/delithiation. Initially, no copper signal is observed on the surface of the \{SEI\} layer. However, in situ sputtering of the electrodes in the \{XPS\} chamber revealed that at the end of first discharge, formation Cu0 with detectable fraction of LixCuO2 and hydroxide in the \{SEI\} layer. At the end of first charge, a large fraction of Cu2O phase with a small fraction of hydroxide is observed. At the end of 10th charge no change in \{SEI\} layer content but increase in thickness was observed. More »»

2017

Journal Article

S. P. Madhusudanan, Gangaja, B., Shyla, A. G., A. Nair, S., Shantikumar V Nair, and Dr. Dhamodaran Santhanagopalan, “Sustainable chemical synthesis for phosphorus-doping of TiO2 nanoparticles by upcycling human urine and impact of doping on energy applications”, ACS Sustainable Chem. Eng, pp. 2393–2399, 2017.[Abstract]


Recently, there has been significant research interest toward sustainable chemical synthesis and processing of nanomaterials. Human urine, a pollutant, requires energy intensive processing steps prior to releasing into rivers and oceans. Upcyling urine has been proposed and practiced as a sustainable process in the past. Doping is one of the foremost processes to elevate the functionality of nanomaterials depending on the applications it is sought for. Phosphorus doping in to TiO2 nanomaterials has been of research interest over a decade now, that has been chiefly done using acidic precursors. Here we demonstrate, upcycling urine, a sustainable process for phosphorus doping into TiO2 lattice. Upon doping the changes in morphology, surface chemistry and band gap is studied in detail and compared with undoped TiO2 that is prepared using deionized water instead of urine. X-ray photoelectron spectroscopy confirmed that the P was replacing Ti in the lattice and exists in P5+ state with a quantified concentration of 2.5–3 at %. P-doped nanoparticles were almost 50% smaller in size with a lower concentration of surface −OH groups and a band gap increase of 0.3 eV. Finally, impact of these changes on energy devices such as dye-sensitized solar cells and li-ion batteries has been investigated. It is confirmed that P-doping induced surface chemical and band gap changes in TiO2 affected the solar cell characteristics negatively, while the smaller particle size and possibly wider surface channels improved Li-ion battery performance. More »»

2017

Journal Article

J. John, Gangaja, B., Shantikumar V Nair, and Dr. Dhamodaran Santhanagopalan, “Conformal coating of TiO2 shell on silicon nanoparticles for improved electrochemical performance in Li-ion battery applications”, Electrochimica Acta, vol. 235, pp. 191 - 199, 2017.[Abstract]


Abstract A scalable wet chemical process for conformal TiO2 coating on silicon nanoparticles is investigated for Li-ion battery applications. The stable core-shell composite nanoparticles along with polyacrylic acid (PAA) binder was studied as an anode in Li-ion batteries and compared with bare-Si as a control. By limiting the charge capacity to 1500 mAh g−1, we established stable cycling (zero fade) for over 50 cycles for the core-shell compared to inferior stability (only 30% capacity retention) of the bare-Si nanoparticles at 0.1C rate. Stable capacity of 800 mAh g−1 at 1C rate over 100 cycles was also demonstrated for the core-shell nanoparticle electrode. Transmission electron microscopy and X-ray photoelectron spectroscopy characterizations indicate that in absence of TiO2 the solid electrolyte interface (SEI) layer which forms around Si was about 8–10 nm and composed of Li2O and LiF. In contrast, the \{SEI\} layer around the TiO2 shell has been thinner (about 2–3 nm) and composed of LiF and LixPFyOz, that stabilized the surface leading to improved cycling stability. Thinner \{SEI\} layer and its composition led to lower charge transfer resistance while the interface between the composite and the Cu-current collector has better adhesion compared to the bare-Si electrode. Impedance spectroscopy measurements confirmed the above. More »»

2017

Journal Article

C. C. Mohan, Cherian, A. Mary, Kurup, S., Joseph, J., Dr. Manitha B. Nair, Vijayakumar, M., Shantikumar V Nair, and Dr. Deepthy Menon, “Stable Titania Nanostructures on Stainless Steel Coronary Stent Surface for Enhanced Corrosion Resistance and Endothelialization.”, Adv Healthc Mater, vol. 6, no. 11, 2017.[Abstract]


Stainless steel (SS) coronary stents continue to present risk of in-stent restenosis that impact its long term safety and efficacy. The present work focuses on developing a drug-free and polymer-less surface on coronary stents by utilizing a titania (TiO2 ) nanotexturing approach through hydrothermal processing, that will offer improved stent performance in vivo. Mechanically stable and durable nanotextured coatings are obtained on SS stents that also offer good corrosion resistance. In vitro vascular cell (endothelial and smooth muscle cells) studies on surface modified SS show preferential rapid endothelialization with enhanced nitric oxide production and reduce smooth muscle cell proliferation, in comparison to unmodified SS. In vivo evaluation of the nanotextured stents after subcutaneous implantation in rabbits show reduced irritability and minimal localized inflammatory response. These beneficial effects suggest that the stable, easily scalable titania nanosurface modification strategy on coronary stent surfaces can be a much cheaper alternative to drug eluting stents in addressing in-stent restenosis.

More »»

2017

Journal Article

R. Ramachandran, Junnuthula, V. Reddy, Gowd, S., Ashokan, A., Thomas, J., Peethambaran, R., Thomas, A., Unni, A. Kodakara K., Panikar, D., Shantikumar V Nair, and Dr. Manzoor K., “Theranostic 3-Dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma.”, Sci Rep, vol. 7, p. 43271, 2017.[Abstract]


Localized and controlled delivery of chemotherapeutics directly in brain-tumor for prolonged periods may radically improve the prognosis of recurrent glioblastoma. Here, we report a unique method of nanofiber by fiber controlled delivery of anti-cancer drug, Temozolomide, in orthotopic brain-tumor for one month using flexible polymeric nano-implant. A library of drug loaded (20 wt%) electrospun nanofiber of PLGA-PLA-PCL blends with distinct in vivo brain-release kinetics (hours to months) were numerically selected and a single nano-implant was formed by co-electrospinning of nano-fiber such that different set of fibres releases the drug for a specific periods from days to months by fiber-by-fiber switching. Orthotopic rat glioma implanted wafers showed constant drug release (116.6 μg/day) with negligible leakage into the peripheral blood (<100 ng) rendering ~1000 fold differential drug dosage in tumor versus peripheral blood. Most importantly, implant with one month release profile resulted in long-term (>4 month) survival of 85.7% animals whereas 07 day releasing implant showed tumor recurrence in 54.6% animals, rendering a median survival of only 74 days. In effect, we show that highly controlled drug delivery is possible for prolonged periods in orthotopic brain-tumor using combinatorial nanofibre libraries of bulk-eroding polymers, thereby controlling glioma recurrence.

More »»
PDF icontheranostic-3-dimensional-nano-brain-implant-for-prolonged-and-localized-treatment-of-recurrent-glioma.pdf

2017

Journal Article

J. P.V, Shantikumar V Nair, and Dr. Kaladhar Kamalasanan, “Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes”, Colloids and Surfaces B: Biointerfaces, vol. 153, pp. 123-131, 2017.[Abstract]


Diabetes mellitus (DM) is a metabolic disorder due to irregularities in glucose metabolism, as a result of insulin disregulation. Chronic DM (Type 1) is treated by daily insulin injections by subcutaneous route. Daily injections cause serious patient non-compliance and medication non-adherence. Insulin Depots (ID) are parenteral formulations designed to release the insulin over a specified period of time, to control the plasma blood glucose level for intended duration. Physiologically, pancreas produces and secretes insulin in basal and pulsatile mode into the blood. Delivery systems mimicking basal release profiles are known as open-loop systems and current marketed products are open-loop systems. Future trend in open-loop systems is to reduce the number of injections per week by enhancing duration of action, by modifying the depot properties. The next generation technologies are closed-loop systems that mimic the pulsatile mode of delivery by pancreas. In closed-loop systems insulin will be released in response to plasma glucose. This review focuses on future trend in open-loop systems; by understanding (a) the secretion of insulin from pancreas, (b) the insulin regulation normal and in DM, (c) insulin depots and (d) the recent progress in open-loop depot technology particularly with respect to nanosystems. © 2017 Elsevier B.V.

More »»

2017

Journal Article

D. S. Baji, Shantikumar V Nair, and Alok Kumar Rai, “Highly porous disk-like shape of Co3O4 as an anode material for lithium ion batteries”, Journal of Solid State Electrochemistry, pp. 1-7, 2017.[Abstract]


A novel disk-like shape of Co3O4 with high porosity was synthesized by a facile hydrothermal approach followed by calcination at 485 °C for 2 h. In order to further confirm the crystal structure, morphology, particle size, surface area, and porosity of the sample, a series of corresponding characterization techniques were used. The disk-like shape of Co3O4 as an anode delivered excellent rate capability such as 510.5 mAh g−1 at 4.0 C, which is much higher than the theoretical capacity of commercial graphite anode (372 mAh g−1). However, the electrode could not recover the high capacity during the long-term cycling at various higher current rates due to the deformation of the structure as confirmed by the ex situ studies. It is believed that the obtained remarkable structural feature with numerous void pores within the structure may be helpful for short-term cycling due to the large contact areas between the electrode and the electrolyte and a shorter diffusion length for lithium ion insertion but unable to act as a buffer to relax the volume expansion/contraction and alleviate the structural damage of the electrode during long-term cycling. © 2017 Springer-Verlag Berlin Heidelberg

More »»

2016

Journal Article

Aab Sasidharan, Swaroop, Sa, Chandran, Pab, Shantikumar V Nair, and Dr. Manzoor K., “Cellular and molecular mechanistic insight into the DNA-damaging potential of few-layer graphene in human primary endothelial cells”, Nanomedicine: Nanotechnology, Biology, and Medicine, vol. 12, pp. 1347-1355, 2016.[Abstract]


Despite graphene being proposed for a multitude of biomedical applications, there is a dearth in the fundamental cellular and molecular level understanding of how few-layer graphene (FLG) interacts with human primary cells. Herein, using human primary umbilical vein endothelial cells as model of vascular transport, we investigated the basic mechanism underlying the biological behavior of graphene. Mechanistic toxicity studies using a battery of cell based assays revealed an organized oxidative stress paradigm involving cytosolic reactive oxygen stress, mitochondrial superoxide generation, lipid peroxidation, glutathione oxidation, mitochondrial membrane depolarization, enhanced calcium efflux, all leading to cell death by apoptosis/necrosis. We further investigated the effect of graphene interactions using cDNA microarray analysis and identified potential adverse effects by down regulating key genes involved in DNA damage response and repair mechanisms. Single cell gel electrophoresis assay/Comet assay confirmed the DNA damaging potential of graphene towards human primary cells. © 2016 Elsevier Inc.

More »»

2016

Journal Article

S. Padmakumar, Jipnomon Joseph, Neppalli, M. H., Mathew, S. E., Shantikumar V Nair, Dr. Sahadev Shankarappa, and Menon, D., “Electrospun Polymeric Core-sheath Yarns as Drug Eluting Surgical Sutures”, ACS Applied Materials and Interfaces, vol. 8, pp. 6925-6934, 2016.[Abstract]


Drug-coated sutures are widely used as delivery depots for antibiotics and anti-inflammatory drugs at surgical wound sites. Although drug-laden coating provides good localized drug concentration, variable loading efficiency and release kinetics limits its use. Alternatively, drug incorporation within suture matrices is hampered by the harsh fabrication conditions required for suture-strength enhancement. To circumvent these limitations, we fabricated mechanically robust electrospun core-sheath yarns as sutures, with a central poly-l-lactic acid core, and a drug-eluting poly-lactic-co-glycolic acid sheath. The electrospun sheath was incorporated with aceclofenac or insulin to demonstrate versatility of the suture in loading both chemical and biological class of drugs. Aceclofenac and insulin incorporated sutures exhibited 15% and 4% loading, and release for 10 and 7 days, respectively. Aceclofenac sutures demonstrated reduced epidermal hyperplasia and cellularity in skin-inflammation animal model, while insulin loaded sutures showed enhanced cellular migration in wound healing assay. In conclusion, we demonstrate an innovative strategy of producing mechanically strong, prolonged drug-release sutures loaded with different classes of drugs. © 2016 American Chemical Society. More »»

2016

Journal Article

S. Mohapatra, Shantikumar V Nair, Dr. Dhamodaran Santhanagopalan, and Alok Kumar Rai, “Nanoplate and mulberry-like porous shape of CuO as anode materials for secondary lithium ion battery”, Electrochimica Acta, vol. 206, pp. 217-225, 2016.[Abstract]


Facile hydrothermal synthesis of nanoplate and mulberry-like porous shape of CuO nanostructures was developed as anode materials for application in lithium ion batteries. The powder X-ray diffraction patterns of both the samples were indexed well to a pure monoclinic phase of CuO with no impurities. The CuO sample synthesized at different pH and reaction temperature exhibited nanoplate with average width and length of ∼150-300 nm and ∼300-700 nm and mulberry-like porous shape of CuO with average length of ∼300-400 nm. Electrochemical tests show that the lithium storage performances of both the nanoplate and mulberry-like samples are influenced more closely to its structural aspects than their morphology and size factors. The CuO nanoplate electrode exhibits high reversible charge capacity of 279.3 mAh g-1 at 1.0C after 70 cycles, and a capacity of 150.2 mAh g-1 even at high current rate of 4.0C during rate test, whereas the mulberry-like porous shape of CuO anode delivers only 131.4 mAh g-1 at 1.0C after 70 cycles and 121.7 mAh g-1 at 4.0C. It is believed that the nanoplate type architecture is very favorable to accommodate the volume expansion/contraction and aggregation of particles during the cyclic process. In contrast, the mulberry-like porous morphology could not preserve the integrity of the structure and completely disintegrated into nanoparticles during Li+ ion insertion/deinsertion due to the loose contact between the particles. © 2016 Elsevier Ltd. All rights reserved.

More »»

2016

Journal Article

P. Preetham, Mohapatra, S., Shantikumar V Nair, Dr. Dhamodaran Santhanagopalan, and Alok Kumar Rai, “Ultrafast pyro-synthesis of NiFe2O4 nanoparticles within a full carbon network as a high-rate and cycle-stable anode material for lithium ion batteries”, RSC Advances, vol. 6, pp. 38064-38070, 2016.[Abstract]


NiFe2O4 nanoparticles fully anchored within a carbon network were prepared via a facile pyro-synthesis method without using any conventional carbon sources. The surface morphology was investigated using field-emission scanning electron microscopy, which confirmed the full anchoring of NiFe2O4 nanoparticles within a carbon network. The primary particle size of NiFe2O4 is in the range of 50-100 nm. The influence of the carbon network on the electrochemical performance of the NiFe2O4/C nanocomposite was investigated. The electrochemical results showed that the NiFe2O4/C anode delivered a reversible capacity of 381.8 mA h g-1 after 100 cycles at a constant current rate of 1.0C, and when the current rate is increased to a high current rate of 5.0C, a reversible capacity of 263.7 mA h g-1 is retained. The obtained charge capacity at high current rates is better than the reported values for NiFe2O4 nanoparticles. The enhanced electrochemical performance can be mainly ascribed to the high electrical conductivity of the electrode, the short diffusion path for Li+ ion transportation in the active material and synergistic effects between the NiFe2O4 nanoparticles and carbon network, which buffers the volume changes and prevents aggregation of NiFe2O4 nanoparticles during cycling. © The Royal Society of Chemistry 2016.

More »»

2016

Journal Article

K. M. Sajesh, Kiran, K., Shantikumar V Nair, and Dr. Jayakumar Rangasamy, “Sequential layer-by-layer electrospinning of nano SrCO3/PRP loaded PHBV fibrous scaffold for bone tissue engineering”, Composites Part B: Engineering, vol. 99, pp. 445-452, 2016.[Abstract]


Development of scaffolds with a blend of osteoinductive and osteoconductive properties is believed to be an effective approach towards bone regeneration. In our current research, a biodegradable Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) [PHBV]/nano strontium carbonate/Platelet Rich Plasma (PRP) composite scaffold was fabricated using sequential layer-by-layer electrospinning method. The synthesized nSrCO3 nanoparticles were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), and further the developed electrospun scaffolds were taken for in vitro assessments. Fiber diameter of the composite fibrous scaffold ranges from 400 to 800 nm. Cell proliferation analysis signifies the role of PRP in the developed scaffold. Osteogenic differentiation of hMSCs was confirmed by measuring the ALP concentration and mineral deposition on the scaffolds and demonstrates considerable enhancement on the composite scaffold. These preliminary results demonstrate that the developed electrospun biocomposite scaffold could serve as a better platform for bone regeneration. More »»

2016

Journal Article

S. Deepthi, Gafoor, A. A. Abdul, Sivashanmugam, A., Shantikumar V Nair, and Dr. Jayakumar Rangasamy, “Nanostrontium ranelate incorporated injectable hydrogel enhanced matrix production supporting chondrogenesis: In vitro”, Journal of Materials Chemistry B, vol. 4, pp. 4092-4103, 2016.[Abstract]


An injectable hydrogel, with the advantage of adaptability to defect sites, patient compliance, controlled flowability and high water uptake capability, was explored as a prototype for cartilage tissue regeneration. Chitosan and fibrin are natural biomaterials that are biocompatible, biodegradable, resemble the ECM of the tissues and contain cell adhesion sites thereby providing a support for cell growth. In this study strontium ranelate, a drug recently studied to enhance cartilage regeneration, was encapsulated in chitosan nanoparticles to provide sustained delivery of the drug content within the composite gel (chitosan/alginate/fibrin hydrogel). The developed nanocomposite gel was characterized using SEM, EDS and FTIR. The particle size of the strontium ranelate loaded chitosan nanoparticles was found to be 160 ± 30 nm. The encapsulation and loading efficiency values of strontium ranelate were found to be 40 ± 10% and 36 ± 2% respectively. Rheological data showed a storage modulus of 5.514 ± 0.102 kPa with thermal stability over the studied temperature range, and the gel properties could be restored within 10 s after the application of a high shear rate. The cytocompatibility and chondrogenic potential was analyzed using human mesenchymal stem cells (hMSCs) to evaluate the applicability of the developed hydrogel for cartilage regeneration. hMSCs were found to be viable in the developed hydrogels and chondrogenic differentiation of hMSCs was observed which was confirmed with enhanced proteoglycan and collagen synthesis. These results indicated that the developed injectable nanocomposite gel would be a suitable system for cartilage regeneration. © 2016 The Royal Society of Chemistry.

More »»

2016

Journal Article

A. Mohan, Shantikumar V Nair, and Lakshmanan, V. - K., “Leucas aspera Nanomedicine Shows Superior Toxicity and Cell Migration Retarded in Prostate Cancer Cells”, Applied Biochemistry and Biotechnology, pp. 1-13, 2016.[Abstract]


Prostate cancer is one of the most common malignancies among men worldwide. The main aim of the present work was to clarify the advantages of a nanoformulation of ayurvedic herbal plants. Specifically, we assessed the improved anticancer activity of Leucas aspera nanoparticles compared with methanolic crude extract in PC3 prostate cancer cells and normal cells. L. aspera is a plant that is used in ayurveda due to the antirheumatic, antipyretic, anti-inflammatory, antibacterial, anticancer, and cytotoxic activities. Nanoparticles of L. aspera were prepared from plant methanolic extracts. Cytotoxic effect was studied in the normal and prostate cancer cells. Size and morphology of the formulated nanoparticles was assessed using dynamic light scattering and scanning electron microscopy. In vitro cytotoxicity of L. aspera nanoparticles for PC3 cells was concentration- and time-dependent. In vitro hemolysis assay, cellular uptake studies, cell aggregation studies, and cell migration assay established the anticancerous activity of L. aspera in prostate cancer. More »»

2016

Journal Article

A. Mohan, Shantikumar V Nair, and Lakshmanan, V. - K., “Leucas aspera Nanomedicine Shows Superior Toxicity and Cell Migration Retarded in Prostate Cancer Cells.”, Appl Biochem Biotechnol, 2016.[Abstract]


Prostate cancer is one of the most common malignancies among men worldwide. The main aim of the present work was to clarify the advantages of a nanoformulation of ayurvedic herbal plants. Specifically, we assessed the improved anticancer activity of Leucas aspera nanoparticles compared with methanolic crude extract in PC3 prostate cancer cells and normal cells. L. aspera is a plant that is used in ayurveda due to the antirheumatic, antipyretic, anti-inflammatory, antibacterial, anticancer, and cytotoxic activities. Nanoparticles of L. aspera were prepared from plant methanolic extracts. Cytotoxic effect was studied in the normal and prostate cancer cells. Size and morphology of the formulated nanoparticles was assessed using dynamic light scattering and scanning electron microscopy. In vitro cytotoxicity of L. aspera nanoparticles for PC3 cells was concentration- and time-dependent. In vitro hemolysis assay, cellular uptake studies, cell aggregation studies, and cell migration assay established the anticancerous activity of L. aspera in prostate cancer.

More »»
PDF iconleucas-aspera-nanomedicine-shows-superior-toxicity-and-cell-migration-retarded-in-prostate-cancer-cells.pdf

2015

Journal Article

Jipnomon Joseph, Paravannoor, A., Shantikumar V Nair, Han, Z. J., Ostrikov, Kb, and Balakrishnan, A., “Supercapacitors based on camphor-derived meso/macroporous carbon sponge electrodes with ultrafast frequency response for ac line-filtering”, Journal of Materials Chemistry A, vol. 3, pp. 14105-14108, 2015.[Abstract]


Supercapacitor electrodes assembled from meso/macroporous camphor-derived carbon sponges show highly promising performance in ac line-filtering. The coin-type supercapacitor exhibits an ultrafast frequency response with a phase angle of -78°and a RC time constant of 319 μs at 120 Hz and may be a viable alternative to the presently dominant aluminium electrolytic capacitors. © The Royal Society of Chemistry 2015.

More »»

2015

Journal Article

J. Joseph, Shantikumar V Nair, and Dr. Deepthy Menon, “Integrating Substrateless Electrospinning with Textile Technology for Creating Biodegradable Three-Dimensional Structures”, Nano letters, vol. 15, pp. 5420–5426, 2015.[Abstract]


The present study describes a unique way of integrating substrateless electrospinning process with textile technology. We developed a new collector design that provided a pressure-driven, localized cotton-wool structure in free space from which continuous high strength yarns were drawn. An advantage of this integration was that the textile could be drug/dye loaded and be developed into a core–sheath architecture with greater functionality. This method could produce potential nanotextiles for various biomedical applications.

More »»

2015

Journal Article

M. Janani, Srikrishnarka, P., Shantikumar V Nair, and Nair, A. S., “An in-depth review on the role of carbon nanostructures in dye-sensitized solar cells”, Journal of Materials Chemistry A, vol. 3, pp. 17914-17938, 2015.[Abstract]


Dye-sensitized solar cells (DSSCs) are considered to be promising, low-cost alternatives to amorphous silicon solar cells. The major components of a DSC include a metal oxide (usually TiO2), a dye, an electrolyte and a Pt- or carbon-deposited counter electrode. The photoexcited electrons from the dye diffuse through the TiO2 network and reach the counter electrode through an external circuit. However due to the trap-limited diffusion process, the electron collection efficiency is affected. Thus, for a hassle-free transport of electrons there is a need for additional electron transport channels. Further in order to reduce the overall cost of the device there is also a need for cheaper alternative counter electrodes in place of Pt. The 15th most abundant element in the earth's crust, carbon and its allotropes with their outstanding catalytic activity and electrical conductivity prove to be promising materials to overcome all these shortcomings and demerits. The review presented below summarizes the up-to-date research efforts on the role of carbon nanostructures in DSSCs, the various synthesis strategies adopted for their preparation and their photovoltaic performance. The review also includes a brief discussion about the role of carbon nanostructures in non-planar flexible wire-shaped DSSCs. © The Royal Society of Chemistry 2015.

More »»

2015

Journal Article

P. Pillai, Surenya, R. S., Shantikumar V Nair, and Lakshmanan, V. - K., “Cancer kinases and its novel inhibitors: Past, present and future challenges”, Current Drug Targets, vol. 16, pp. 1233-1245, 2015.[Abstract]


Cancer kinome is now well organized as an important target for a new class of cancer drugs. There are more than 500 members in the kinase family in which some of them are clinically analysed, while the rest are under investigation for potential therapeutic applications. Phosphorylation, major function of kinases is one of the most significant signal transduction mechanism in which intercellular signals regulate intracellular processes like ion transport, hormone responses and cellular proliferation. Any deregulation of kinase function may lead to tumor progression and other disorders such as immu-nological, neurological, metabolic including also infectious diseases. This led to the necessity in the development of kinase inhibitors as therapeutic agent. Herein we discuss about different types of kinases and their inhibitors in various types of cancers. This review portrays a broad overview of the origin of kinases, discovery, the characterization and mode of action of kinase inhibitors in cancer therapy. © 2015 Bentham Science Publishers.

More »»

2015

Journal Article

Dr. Manitha B. Nair, Nancy, D., Krishnan, A. G., Anjusree, G. S., Vadukumpully, S., and Shantikumar V Nair, “Graphene oxide nanoflakes incorporated gelatin–hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells”, Nanotechnology, vol. 26, p. 161001, 2015.[Abstract]


In this study, graphene oxide (GO) nanoflakes (0.5 and 1 wt%) were incorporated into a gelatin–hydroxyapatite (GHA) matrix through a freeze drying technique and its effect to enhance mechanical strength and osteogenic differentiation was studied. The GHA matrix with GO demonstrated less brittleness in comparison to GHA scaffolds. There was no significant difference in mechanical strength between GOGHA 0.5 and GOGHA 1.0 scaffolds. When the scaffolds were immersed in phosphate buffered saline (to mimic physiologic condition) for 60 days, around 50–60% of GO was released in sustained and linear manner and the concentration was within the toxicity limit as reported earlier. Further, GOGHA 0.5 scaffolds were continued for cell culture experiments, wherein the scaffold induced osteogenic differentiation of human adipose derived mesenchymal stem cells without providing supplements like dexamethasone, L-ascorbic acid and β glycerophosphate in the medium. The level of osteogenic differentiation of stem cells was comparable to those cultured on GHA scaffolds with osteogenic supplements. Thus biocompatible, biodegradable and porous GO reinforced gelatin–HA 3D scaffolds may serve as a suitable candidate in promoting bone regeneration in orthopaedics.

More »»

2015

Journal Article

M. G. Sangeet Nair, Dr. Ullas Mony, Dr. Deepthy Menon, Dr. Manzoor K., Sidharthan, N., Pavithran, K., Shantikumar V Nair, and Krishnakumar N. Menon, “Development and molecular characterization of polymeric micro-nanofibrous scaffold of a defined 3-D niche for in vitro chemosensitivity analysis against acute myeloid leukemia cells”, International journal of nanomedicine, 2015.[Abstract]


Standard in vitro drug testing employs 2-D tissue culture plate systems to test anti-leukemic drugs against cell adhesion-mediated drug-resistant leukemic cells that harbor in 3-D bone marrow microenvironments. This drawback necessitates the fabrication of 3-D scaffolds that have cell adhesion-mediated drug-resistant properties similar to in vivo niches. We therefore aimed at exploiting the known property of polyurethane (PU)/poly-L-lactic acid (PLLA) in forming a micro-nanofibrous structure to fabricate unique, not presented before, as far as we are aware, 3-D micro-nanofibrous scaffold composites using a thermally induced phase separation technique. Among the different combinations of PU/PLLA composites generated, the unique PU/PLLA 60:40 composite displayed micro-nanofibrous morphology similar to decellularized bone marrow with increased protein and fibronectin adsorption. Culturing of acute myeloid leukemia (AML) KG1a cells in FN-coated PU/PLLA 60:40 shows increased cell adhesion and cell adhesion-mediated drug resistance to the drugs cytarabine and daunorubicin without changing the original CD34(+)/CD38(-)/CD33(-) phenotype for 168 hours compared to fibronectin tissue culture plate systems. Molecularly, as seen in vivo, increased chemoresistance is associated with the upregulation of anti-apoptotic Bcl2 and the cell cycle regulatory protein p27(Kip1) leading to cell growth arrest. Abrogation of Bcl2 activity by the Bcl2-specific inhibitor ABT 737 led to cell death in the presence of both cytarabine and daunorubicin, demonstrating that the cell adhesion-mediated drug resistance induced by Bcl2 and p27(Kip1) in the scaffold was similar to that seen in vivo. These results thus show the utility of a platform technology, wherein drug testing can be performed before administering to patients without the necessity for stromal cells.

More »»

2015

Journal Article

S. BN, Dr. Ullas Mony, Dr. Deepthy Menon, VK, B., AG, M., and Shantikumar V Nair, “Bone Tissue Engineering with Multilayered Scaffolds-Part I: An Approach for Vascularizing Engineered Constructs In Vivo.”, Tissue Eng Part A., pp. 19-20, 2015.[Abstract]


Obtaining functional capillaries through the bulk has been identified as a major challenge in tissue engineering, particularly for critical-sized defects. In the present study, a multilayered scaffold system was developed for bone tissue regeneration, designed for through-the-thickness vascularization of the construct. The basic principle of this approach was to alternately layer mesenchymal stem cell-seeded nanofibers (osteogenic layer) with microfibers or porous ceramics (osteoconductive layer), with an intercalating angiogenic zone between the two and with each individual layer in the microscale dimension (100-400 μm). Such a design can create a scaffold system potentially capable of spatially distributed vascularization in the overall bulk tissue. In the cellular approach, the angiogenic zone consisted of collagen/fibronectin gel with endothelial cells and pericytes, while in the acellular approach, cells were omitted from the zone without altering the gel composition. The cells incorporated into the construct were analyzed for viability, distribution, and organization of cells on the layers and vessel development in vitro. Furthermore, the layered constructs were implanted in the subcutaneous space of nude mice and the processes of vascularization and bone tissue regeneration were followed by histological and energy-dispersive X-ray spectroscopy (EDS) analysis. The results indicated that the microenvironment in the angiogenic zone, microscale size of the layers, and the continuously channeled architecture at the interface were adequate for infiltrating host vessels through the bulk and vascularizing the construct. Through-the-thickness vascularization and mineralization were accomplished in the construct, suggesting that a suitably bioengineered layered construct may be a useful design for regeneration of large bone defects.

More »»

2013

Journal Article

N. S. Binulal, Natarajan, A., Dr. Deepthy Menon, Bhaskaran, V. K., Dr. Ullas Mony, and Shantikumar V Nair, “PCL-gelatin composite nanofibers electrospun using diluted acetic acid-ethyl acetate solvent system for stem cell-based bone tissue engineering”, Journal of Biomaterials Science, Polymer Edition, vol. 25, no. 4, 2013.[Abstract]


Composite nanofibrous scaffolds with various poly(ε-caprolactone) (PCL)/gelatin ratios (90:10, 80:20, 70:30, 60:40, 50:50 wt.%) were successfully electrospun using diluted acetic and ethyl acetate mixture. The effects of this solvent system on the solution properties of the composites and its electrospinning properties were investigated. Viscosity and conductivity of the solutions, with the addition of gelatin, allowed for the electrospinning of uniform nanofibers with increasing hydrophilicity and degradation. Composite nanofibers containing 30 and 40 wt.% gelatin showed an optimum combination of hydrophilicity and degradability and also maintained the structural integrity of the scaffold. Human mesenchymal stem cells (hMSCs) showed favorable interaction with and proliferation on, the composite scaffolds. hMSC proliferation was highest in the 30 and 40 wt.% gelatin containing composites. Our experimental data suggested that PCL-gelatin composite nanofibers containing 30-40 wt.% of gelatin and electrospun in diluted acetic acid-ethyl acetate mixture produced nanofiber scaffolds with optimum hydrophilicity, degradability, and bio-functionality for stem cell-based bone tissue engineering.

More »»

2013

Journal Article

R. Nadesh, Narayanan, D., P.r., S., Vadakumpully, S., Dr. Ullas Mony, Koyakkutty, M., Shantikumar V Nair, and Dr. Deepthy Menon, “Hematotoxicological analysis of surface-modified and -unmodified chitosan nanoparticles”, Journal of Biomedical Materials Research - Part A, vol. 101, pp. 2957-2966, 2013.[Abstract]


The increasing interest in using chitosan nanoparticles for controlled drug delivery is hampered by its blood incompatibility, especially for intravenous applications. This study investigated the effects of processing solvents (acetic acid/lactic acid), dispersing media (acidic medium/saline), and surface modifiers (polyethylene glycol, polyvinyl alcohol, and ethylenediaminetetraacetatic acid) on the hemocompatibility of chitosan. Blood compatibility of chitosan nanoparticles prepared by ionotropic gelation with altered surface chemistry was evaluated by assessing their hemolytic activity, platelet aggregation, coagulation, and cytokine induction. It was observed that nanoparticles prepared in lactic acid and dispersed in saline did not show hemolysis, platelet aggregation, or coagulation, whereas nanoparticles prepared in acetic acid showed strong hemolysis. Surface modifiers were not observed to significantly affect blood compatibility, with the exception of EDTA, which delayed blood clotting times. Thus, chitosan nanoparticles prepared in lactic acid and dispersed in saline may be an ideal nanocarrier for parenteral applications. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A:2957-2966, 2013. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

More »»

2013

Journal Article

T. R. Anuraj, N Rejinold, S., Biswas, R., Saroj, S., Shantikumar V Nair, Dr. Jayakumar Rangasamy, and Dr. Sabitha M., “Curcumin Nanospheres by Surfactant Free Wet Milling Method (In Press)”, Journal of Biomedical Nanotechnology, 2013.

Publication Type: Patent

Year of Publication Publication Type Title

2014

Patent

Dr. Manzoor K., Retnakumari, A., and Shantikumar V Nair, “A core-shell nanostructure on the basis of proteins with corresponding therapeutic agents”, U.S. Patent PCT/IN2013/0001412014.[Abstract]


The present invention is related to the design and synthesis of nanomedicine comprising of a protein-protein composite or core-shell nanoparticle, where one protein carries one type of therapeutic molecule and second protein carries another type of therapeutic molecule. This nanomedicine formulation is intended for the treatment of diseases including cancer. To be specific, the current invention is designed to deliver two different types of therapeutic molecules in sequence or in combination using a single entity of nanoparticle formed by two different proteins that carry two therapeutic molecules separately

More »»

2014

Patent

Dr. Manzoor K., Ashokan, A., and Shantikumar V Nair, “The art, method, manner, process and system of a nano-biomineral for multi-modal contrast imaging and drug delivery”, U.S. Patent PCT/IN2013/0001432014.[Abstract]


The present invention relates to a nano-sized material that can provide contrast enhancement for multple imaging methods and also deliver therapeutic molecules such as nucleic acids or chemo drugs to diseased sites such as cancer. In particular, the present invention relates to nano-sized synthetic calcium phosphates and calcium apatite nanomaterials showing simultaneous contrast for at least any two of the medical imaging modalities including radio, raman-, near-infrared fluroscence-, magnetic resonance and x-ray-imaging.

More »»

2014

Patent

Dr. Manzoor K., Ashokan, A., Dr. Deepthy Menon, and Shantikumar V Nair, “The art, method, manner, process and system of multifunctional nanobiomaterial for molecular imaging and drug- delivery”, U.S. Patent PCT/IN2013/0001422014.[Abstract]


The present invention relates to a nano-sized material that can provide contrast enhancement for multiple molecular imaging mthods and also deliver therapeutic nucleic acids or chemodrugs at a specific site of disease such as cancer. In particular, the present invention relates to a nanosized synthetic calcium apatite based materials showing contrast imaging for visible to near-infrared fluroscence, magnetic resonance imaging and x-ray imaging together with targeted delivery of nucleic acid drugs (DNA or RNA) to specific cancer types.

More »»

2013

Patent

R. Ramachandran, Dr. Manzoor K., and Shantikumar V Nair, “The art, method,manner process and system of fibrous bio-degradable polymeric wafers for the local delivery of therapeutic agents in combinations”, U.S. Patent PCT/IN2013/0001102013.[Abstract]


The present invention is related to flexible, fibrous, biocompatible and biodegradable polymeric wafer consisting of more than one polymeric fibres, each one loaded with different therapeutic agents having mutually exclusive synergistic activity. The wafer is capable of delivering the drugs locally in to the deceased site like tumor, inflammation, wound etc in a controlled and sustained fashion for enhanced therapeutic effect. The combination of drugs loaded in the wafer is chosen in such a way that the second or consecutive drugs will enhance or improve the therapeutic effect of the first drug

More »»

2013

Patent

Dr. Manzoor K., PARWATHY, C., Archana, P. R., and Shantikumar V Nair, “Polymer - polymer or polymer - protein core - shell nano medicine loaded with multiple drug molecules”, U.S. Patent PCT/IN2013/0001082013.[Abstract]


The present invention relates to the method of synthesis of core-shell nano medicine serving as a novel platform for the encapsulation of multiple therapeutic molecules enabling combinatorial therapy against diseases including cancer, inflammatory and auto-immune diseases and its associated manifestations. The core-shell nano-construct comprises of a biodegradable and biocompatible polymer as the core and another polymer or protein as the shell, aiding following constructs (i) polymer core-polymer shell and (ii) polymer core-protein shell. The core-shell nano medicine is developed in a manner to encapsulate at least one anti-cancer agent each in both the core and the shell

More »»

2013

Patent

V. Harish, K, M., and Shantikumar V Nair, “THE ART, METHOD, MANNER, PROCESS AND SYSTEM OF STANNOUS DOPED MICRO AND NANO CONSTRUCTS FOR AUGMENTED RADIOFREQUENCY ABLATION”, U.S. Patent 156/CHE/2013 (AMRT-0044IN)2013.

2012

Patent

M. Koyakutty, Shantikumar V Nair, Dr. Deepthy Menon, and Asok, A., “THE ART, METHOD, MANNER, PROCESS AND SYSTEM OF MULTIFUNCTIONAL NANOMEDICINE FOR MOLECULAR IMAGING AND SCINTILLATION THERAPY”, U.S. Patent 26/CHE/20122012.

2012

Patent

K. R. V. Subramanian, Shantikumar V Nair, Lal, M., BALAKRISHNAN, A. V. I. N. A. S. H., and Sivakumar, N., “The method, Manner, Process and System of Preparation of Super capacitor or Battery Anodes using novel activated Carbon Graphene or Activated Carbon-Graphite Composites by Electrophoretic Co-deposition”, U.S. Patent 3428/CHE/20122012.

2011

Patent

Dr. Sabitha M., Dr. Jayakumar Rangasamy, Shantikumar V Nair, Amrita, N., N Rejinold, S., and Lakshmanan, V. Kumar, “The art, method, manner, process and system of preparation of curcumin loaded chitin nanogels for skin penetration”, U.S. Patent 2353/CHE/2011 A2011.[Abstract]


A method for the preparation of chitin nanogel loaded with curcumin without using any organic solvents or surfactants which show deep skin penetration and increased bioavailability of curcumin at sites of cancer with low pH.

More »»

2011

Patent

Shantikumar V Nair, Dr. Jayakumar Rangasamy, Lakshmanan, V. - K., Kumar, P. T. Sudhess, Snima, K. S., and Ramya, C., “THE ART, METHOD, MANNER, PROCESS AND SYSTEM OF PREPARATION OF PROPOLIS NANOPARTICLES FOR ANTI-CANCEROUS AND ANTIBACTERIAL APPLICATIONS”, U.S. Patent 907/CHE/20112011.

2011

Patent

M. Koyakutty, Retnakumari, A., and Shantikumar V Nair, “THE ART, METHOD, MANNER, PROCESS AND SYSTEM OF PROTEIN-SORAFENIB NANOMEDICINE”, U.S. Patent 3455/CHE/20112011.

2011

Patent

Dr. Deepthy Menon, Chennazhi, K., Mohan, C. C., R, S. P., and Shantikumar V Nair, “THE ART, METHOD AND MANNER OF TITANIUM-BASED CARDIOVASCULAR STENTS WITH NANOSTRUCTURED SURFACES”, U.S. Patent 2355/CHE/20112011.

2010

Patent

Shantikumar V Nair, “The Art, Method, Manner, Process and System of Photo Voltaic Panel Design using Vertically Aligned Panels for improved efficiency”, U.S. Patent 2446/CHE/2010 2010.

2010

Patent

Shantikumar V Nair and Lekha, P., “The Art, Method, Manner, Process and Design of a double-side illumination photovoltaic cell and method for making the same”, U.S. Patent 2447/CHE/20102010.

2010

Patent

Dr. Jayakumar Rangasamy, Manzoor, K., Shantikumar V Nair, Lakshmanan, V. K., Kumar, P. T. Sudheesh, and Abhilash, S., “THE ART, MANNER, METHOD AND PROCESS OF PREPARATION OF CHITOSAN SPONGE CONTAINING THE HERB COLEUS PLECTRANTBUS AS A WOUND DRESSING”, U.S. Patent 3012/CHE/20102010.

2010

Patent

Dr. Jayakumar Rangasamy, Manzoor, K., Shantikumar V Nair, Lakshmanan, V. K., Kumar, P. T. Sudheesh, and Abhilash, S., “The Art, Method, Manner, Process and System of Chitosan hydrogel / Nano Zinc Oxide Membranes for Wound Dressing Applications”, U.S. Patent 1025/CHE/20102010.

207
PROGRAMS
OFFERED
5
AMRITA
CAMPUSES
15
CONSTITUENT
SCHOOLS
A
GRADE BY
NAAC, MHRD
9th
RANK(INDIA):
NIRF 2017
150+
INTERNATIONAL
PARTNERS